
 
 

IBM Rational Software 
 

 

Section 1: Course Registration Requirements 
 

Version 2004



Section 1: Course Registration Requirements 
 

Problem Statement 
 
As the head of information systems for Wylie College you are tasked with developing a new student registration 
system. The college would like a new client-server system to replace its much older system developed around 
mainframe technology. The new system will allow students to register for courses and view report cards from 
personal computers attached to the campus LAN. Professors will be able to access the system to sign up to teach 
courses as well as record grades.  
 
Due to a decrease in federal funding, the college cannot afford to replace the entire system at once. The college will 
keep the existing course catalog database where all course information is maintained. This database is an Ingres 
relational database running on a DEC VAX. Fortunately the college has invested in an open SQL interface that 
allows access to this database from college’s Unix servers. The legacy system performance is rather poor, so the 
new system must ensure that access to the data on the legacy system occurs in a timely manner.  The new system 
will access course information from the legacy database but will not update it. The registrar’s office will continue to 
maintain course information through another system.  
 
At the beginning of each semester, students may request a course catalogue containing a list of course offerings for 
the semester.  Information about each course, such as professor, department, and prerequisites, will be included to 
help students make informed decisions. 
 
The new system will allow students to select four course offerings for the coming semester.  In addition, each 
student will indicate two alternative choices in case the student cannot be assigned to a primary selection.  Course 
offerings will have a maximum of ten students and a minimum of three students.  A course offering with fewer than 
three students will be canceled. For each semester, there is a period of time that students can change their schedule.  
Students must be able to access the system during this time to add or drop courses. Once the registration process is 
completed for a student, the registration system sends information to the billing system so the student can be billed 
for the semester. If a course fills up during the actual registration process, the student must be notified of the change 
before submitting the schedule for processing. 
 
At the end of the semester, the student will be able to access the system to view an electronic report card. Since 
student grades are sensitive information, the system must employ extra security measures to prevent unauthorized 
access. 
 
Professors must be able to access the on-line system to indicate which courses they will be teaching.  They will also 
need to see which students signed up for their course offerings. In addition, the professors will be able to record the 
grades for the students in each class.  

  Copyright IBM Corp. 2004 Page 2 
 



Section 1: Course Registration Requirements 
 

Glossary 
Introduction 

This document is used to define terminology specific to the problem domain, explaining terms, which may 
be unfamiliar to the reader of the use-case descriptions or other project documents.  Often, this document 
can be used as an informal data dictionary, capturing data definitions so that use-case descriptions and 
other project documents can focus on what the system must do with the information. 

Definitions 
The glossary contains the working definitions for the key concepts in the Course Registration System. 

Course 
A class offered by the university. 

Course Offering 
A specific delivery of the course for a specific semester – you could run the same course in parallel 
sessions in the semester. Includes the days of the week and times it is offered. 

Course Catalog 
The unabridged catalog of all courses offered by the university. 

Faculty 
All the professors teaching at the university. 

Finance System 
The system used for processing billing information. 

Grade 
The evaluation of a particular student for a particular course offering. 

Professor 
A person teaching classes at the university. 

Report Card 
All the grades for all courses taken by a student in a given semester. 

Roster 
All the students enrolled in a particular course offering. 

Student 
A person enrolled in classes at the university. 

Schedule 
The courses a student has selected for the current semester. 

Transcript 
The history of the grades for all courses, for a particular student sent to the finance system, which in turn 
bills the students. 

  Copyright IBM Corp. 2004 Page 3 
 



Section 1: Course Registration Requirements 
 

Supplementary Specification  
Objectives 

The purpose of this document is to define requirements of the Course Registration System.  This 
Supplementary Specification lists the requirements that are not readily captured in the use cases of the use-
case model. The Supplementary Specifications and the use-case model together capture a complete set of 
requirements on the system. 

Scope 
This Supplementary Specification applies to the Course Registration System, which will be developed by 
the OOAD students. 

This specification defines the non-functional requirements of the system; such as reliability, usability, 
performance, and supportability, as well as functional requirements that are common across a number of 
use cases. (The functional requirements are defined in the Use Case Specifications.) 

References 
None. 

Functionality 
Multiple users must be able to perform their work concurrently. 
 
If a course offering becomes full while a student is building a schedule including that offering, the student 
must be notified. 

Usability  
The desktop user-interface shall be Windows 95/98 compliant. 

Reliability  
The system shall be available 24 hours a day 7 days a week, with no more than 10% down time. 

Performance 
The system shall support up to 2000 simultaneous users against the central database at any given time, and 
up to 500 simultaneous users against the local servers at any one time. 

The system shall provide access to the legacy course catalog database with no more than a 10 second 
latency. 
Note: Risk-based prototypes have found that the legacy course catalog database cannot meet our 
performance needs without some creative use of mid-tier processing power 

The system must be able to complete 80% of all transactions within 2 minutes.  

Supportability 
None. 

Security 
The system must prevent students from changing any schedules other than their own, and professors from 
modifying assigned course offerings for other professors.   

Only Professors can enter grades for students. 

Only the Registrar is allowed to change any student information. 

  Copyright IBM Corp. 2004 Page 4 
 



Section 1: Course Registration Requirements 
 

Design Constraints 
The system shall integrate with an existing legacy system, the Course Catalog System, which is an RDBMS 
database. 

The system shall provide a Windows-based desktop interface. 

  Copyright IBM Corp. 2004 Page 5 
 



Section 1: Course Registration Requirements 
 

Use-Case Model 
Course Registration System Use-Case Model Main Diagram 

Course Catalog

View Report Card

Register for Courses

Submit Grades

Select Courses to Teach

Student

Professor

Billing System

Maintain Student  Information

Maintain Professor Information

Login

Close Registration

Registrar

  
 
 

  Copyright IBM Corp. 2004 Page 6 
 



Section 1: Course Registration Requirements 
 

Close Registration  

Brief Description 
This use case allows a Registrar to close the registration process.  Course offerings that do not have enough students 
are cancelled.  Course offerings must have a minimum of three students in them.  The billing system is notified for 
each student in each course offering that is not cancelled, so the student can be billed for the course offering. 

Flow of Events 

Basic Flow  
This use case starts when the Registrar requests that the system close registration. 

1. The system checks to see if registration is in progress.  If it is, then a message is displayed to the Registrar, and 
the use case terminates.  The Close Registration processing cannot be performed if registration is in progress. 

2. For each course offering, the system checks if a professor has signed up to teach the course offering and at least 
three students have registered.  If so, the system commits the course offering for each schedule that contains it. 

3. For each schedule, the system “levels” the schedule: if the schedule does not have the maximum number of 
primary courses selected, the system attempts to select alternates from the schedule’s list of alternates.  The first 
available alternate course offerings will be selected.  If no alternates are available, then no substitution will be 
made. 

4. For each course offering, the system closes all course offerings.  If the course offerings do not have at least 
three students at this point (some may have been added as a result of leveling), then the system cancels the 
course offering.  The system cancels the course offering for each schedule that contains it. 

5. The system calculates the tuition owed by each student for his current semester schedule and sends a transaction 
to the Billing System.  The Billing System will send the bill to the students, which will include a copy of their 
final schedule. 

Alternative Flows 

No Professor for the Course Offering 
If, in the Basic Flow, there is no professor signed up to teach the course offering, the system will cancel the 
course offering.  The system cancels the course offering for each schedule that contains it. 

Billing System Unavailable 
If the system is unable to communicate with the Billing System, the system will attempt to re-send the 
request after a specified period. The system will continue to attempt to re-send until the Billing System 
becomes available. 

Special Requirements 
None. 

Pre-Conditions 
The Registrar must be logged onto the system in order for this use case to begin. 

Post-Conditions 
If the use case was successful, registration is now closed.  If not, the system state remains unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 7 
 



Section 1: Course Registration Requirements 
 

 Login  

Brief Description 
This use case describes how a user logs into the Course Registration System. 

Flow of Events 

Basic Flow  
This use case starts when the actor wishes to log into the Course Registration System. 

1. The actor enters his/her name and password. 

2. The system validates the entered name and password and logs the actor into the system.  

Alternative Flows 

Invalid Name/Password 
If, in the Basic Flow, the actor enters an invalid name and/or password, the system displays an error 
message. The actor can choose to either return to the beginning of the Basic Flow or cancel the login, at 
which point the use case ends. 

Special Requirements 
None. 

Pre-Conditions 
The system is in the login state and has the login screen displayed. 

Post-Conditions 
If the use case was successful, the actor is now logged into the system.  If not, the system state is unchanged. 

Extension Points 
None.  

 

  Copyright IBM Corp. 2004 Page 8 
 



Section 1: Course Registration Requirements 
 

  

Maintain Professor Information 

Brief Description 
This use case allows the Registrar to maintain professor information in the registration system. This includes adding, 
modifying, and deleting professors from the system. 

Flow of Events 

Basic Flow  
This use case starts when the Registrar wishes to add, change, and/or delete professor information in the system. 

1. The system requests that the Registrar specify the function he/she would like to perform (either Add a 
Professor, Update a Professor, or Delete a Professor) 

2. Once the Registrar provides the requested information, one of the sub flows is executed. 
If the Registrar selected “Add a Professor”, the Add a Professor subflow is executed. 
If the Registrar selected “Update a Professor”, the Update a Professor subflow is executed. 
If the Registrar selected “Delete a Professor”, the Delete a Professor subflow is executed. 

Add a Professor 
The system requests that the Registrar enter the professor information.  This includes: 
- name 
- date of birth 
- social security number 
- status 
- department 

1. Once the Registrar provides the requested information, the system generates and assigns a unique id 
number to the professor.  The professor is added to the system. 

2. The system provides the Registrar with the new professor id. 

Update a Professor 
1. The system requests that the Registrar enter the professor id. 

2. The Registrar enters the professor id.  The system retrieves and displays the professor information. 

3. The Registrar makes the desired changes to the professor information. This includes any of the 
information specified in the Add a Professor sub-flow. 

4. Once the Registrar updates the necessary information, the system updates the professor record. 

Delete a Professor 
1. The system requests that the Registrar enter the professor id  

2. The Registrar enters the professor id.  The system retrieves and displays the professor information. 

3. The system prompts the Registrar to confirm the deletion of the professor. 

4. The Registrar verifies the deletion. 

5. The system deletes the professor from the system. 

  Copyright IBM Corp. 2004 Page 9 
 



Section 1: Course Registration Requirements 
 

Alternative Flows 

Professor Not Found 
If, in the Update a Professor or Delete a Professor sub-flows, a professor with the specified id number 
does not exist, the system displays an error message. The Registrar can then enter a different id number or 
cancel the operation, at which point the use case ends. 

Delete Cancelled 
If, in the Delete A Professor sub-flow, the Registrar decides not to delete the professor, the delete is 
cancelled, and the Basic Flow is re-started at the beginning. 

Special Requirements 
None. 

Pre-Conditions 
The Registrar must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, the professor information is added, updated, or deleted from the system.  Otherwise, 
the system state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 10 
 



Section 1: Course Registration Requirements 
 

  

Maintain Student Information 

Brief Description 
This use case allows the Registrar to maintain student information in the registration system. This includes adding, 
modifying, and deleting Students from the system. 

Flow of Events 

Basic Flow  
This use case starts when the Registrar wishes to add, change, and/or delete student information in the system. 

1. The system requests that the Registrar specify the function he/she would like to perform (either Add a Student, 
Update a Student, or Delete a Student) 

2. Once the Registrar provides the requested information, one of the sub flows is executed. 
If the Registrar selected “Add a Student”, the Add a Student subflow is executed. 
If the Registrar selected “Update a Student”, the Update a Student subflow is executed. 
If the Registrar selected “Delete a Student”, the Delete a Student subflow is executed. 

Add a Student 
1. The system requests that the Registrar enter the student information.  This includes: 

- name 
- date of birth 
- social security number 
- status 
- graduation date 

2. Once the Registrar provides the requested information, the system generates and assigns a unique id 
number to the student.  The student is added to the system. 

3. The system provides the Registrar with the new student id. 

Update a Student 
1. The system requests that the Registrar enter the student id. 

2. The Registrar enters the student id.  The system retrieves and displays the student information. 

3. The Registrar makes the desired changes to the student information. This includes any of the 
information specified in the Add a Student sub-flow. 

4. Once the Registrar updates the necessary information, the system updates the student information. 

Delete a Student 
1. The system requests that the Registrar enter the student id  

2. The Registrar enters the student id.  The system retrieves and displays the student information. 

3. The system prompts the Registrar to confirm the deletion of the student. 

4. The Registrar verifies the deletion. 

5. The system deletes the student from the system. 

  Copyright IBM Corp. 2004 Page 11 
 



Section 1: Course Registration Requirements 
 

Alternative Flows 

Student Not Found 
If, in the Update a Student or Delete a Student sub-flows, a student with the specified id number does not 
exist, the system displays an error message. The Registrar can then enter a different id number or cancel the 
operation, at which point the use case ends. 

Delete Cancelled 
If, in the Delete A Student sub-flow, the Registrar decides not to delete the student, the delete is cancelled 
and the Basic Flow is re-started at the beginning. 

Special Requirements 
None. 

Pre-Conditions 
The Registrar must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, the student information is added, updated, or deleted from the system.  Otherwise, the 
system state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 12 
 



Section 1: Course Registration Requirements 
 

  

Register for Courses 

Brief Description 
This use case allows a Student to register for course offerings in the current semester. The Student can also update or 
delete course selections if changes are made within the add/drop period at the beginning of the semester. The Course 
Catalog System provides a list of all the course offerings for the current semester. 

Flow of Events 

Basic Flow  
This use case starts when a Student wishes to register for course offerings, or to change his/her existing course 
schedule. 

1. The Student provides the function to perform (one of the sub flows is executed): 
If the Student selected “Create a Schedule”, the Create a Schedule subflow is executed. 
If the Student selected “Update a Schedule”, the Update a Schedule subflow is executed. 
If the Student selected “Delete a Schedule”, the Delete a Schedule subflow is executed. 

Create a Schedule 
1. The system retrieves a list of available course offerings from the Course Catalog System and displays 

the list to the Student. 

2. The Select Offerings subflow is executed. 

3. The Submit Schedule subflow is executed. 

Update a Schedule 
1. The system retrieves and displays the Student’s current schedule (e.g., the schedule for the current 

semester). 

2. The system retrieves a list of available course offerings from the Course Catalog System and displays 
the list to the Student. 

3. The Student may update the course selections on the current selection by deleting and adding new 
course offerings. The Student selects the course offerings to add from the list of available course 
offerings. The Student also selects any course offerings to delete from the existing schedule.   

4. Once the student has made his/her selections, the system updates the schedule for the Student using the 
selected course offerings. 

5. The Submit Schedule subflow is executed. 

Delete a Schedule 
1. The system retrieves and displays the Student’s current schedule (e.g., the schedule for the current 

semester). 

2. The system prompts the Student to confirm the deletion of the schedule. 

3. The Student verifies the deletion. 

4. The system deletes the Schedule.  If the schedule contains “enrolled in” course offerings, the Student 
must be removed from the course offering. 

Select Offerings 
The Student selects 4 primary course offerings and 2 alternate course offerings from the list of available 
offerings. 

  Copyright IBM Corp. 2004 Page 13 
 



Section 1: Course Registration Requirements 
 

Once the student has made his/her selections, the system creates a schedule for the Student containing the 
selected course offerings. 

Submit Schedule 
For each selected course offering on the schedule not already marked as “enrolled in”, the system verifies 
that the Student has the necessary prerequisites, that the course offering is open, and that there are no 
schedule conflicts. 

The system then adds the Student to the selected course offering.  The course offering is marked as 
“enrolled in” in the schedule. 

The schedule is saved in the system. 

Alternative Flows 

Save a Schedule 
At any point, the Student may choose to save a schedule rather than submitting it.  If this occurs, the 
Submit Schedule step is replaced with the following:  

The course offerings not marked as “enrolled in” are marked as “selected” in the schedule. 

The schedule is saved in the system. 

Unfulfilled Prerequisites, Course Full, or Schedule Conflicts 
If, in the Submit Schedule sub-flow, the system determines that the Student has not satisfied the necessary 
prerequisites, or that the selected course offering is full, or that there are schedule conflicts, an error 
message is displayed.  The Student can either select a different course offering and the use case continues, 
save the schedule, as is (see Save a Schedule subflow), or cancel the operation, at which point the Basic 
Flow is re-started at the beginning. 

No Schedule Found 
If, in the Update a Schedule or Delete a Schedule sub-flows, the system is unable to retrieve the Student’s 
schedule, an error message is displayed.  The Student acknowledges the error, and the Basic Flow is re-
started at the beginning. 

Course Catalog System Unavailable 
If the system is unable to communicate with the Course Catalog System, the system will display an error 
message to the Student.  The Student acknowledges the error message, and the use case terminates. 

Course Registration Closed 
When the use case starts, if it is determined that registration for the current semester has been closed, a 
message is displayed to the Student, and the use case terminates.  Students cannot register for course 
offerings after registration for the current semester has been closed. 

Delete Cancelled 
If, in the Delete A Schedule sub-flow, the Student decides not to delete the schedule, the delete is 
cancelled, and the Basic Flow is re-started at the beginning. 

Special Requirements 
None. 

Pre-Conditions 
The Student must be logged onto the system before this use case begins. 

  Copyright IBM Corp. 2004 Page 14 
 



Section 1: Course Registration Requirements 
 

Post-Conditions 
If the use case was successful, the student schedule is created, updated, or deleted.  Otherwise, the system state is 
unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 15 
 



Section 1: Course Registration Requirements 
 

  

Select Courses to Teach 

Brief Description 
This use case allows a Professor to select the course offerings from the course catalog for the courses that he/she is 
eligible for and wishes to teach in the upcoming semester. 

Flow of Events 

Basic Flow  
This use case starts when a Professor wishes to sign up to teach some course offerings for the upcoming semester. 

1. The system retrieves and displays the list of course offerings the professor is eligible to teach for the current 
semester. The system also retrieves and displays the list of courses the professor has previously selected to 
teach. 

2. The professor selects and/or de-selects the course offerings that he/she wishes to teach for the upcoming 
semester. 

3. The system removes the professor from teaching the de-selected course offerings. 

4. The system verifies that the selected offerings do not conflict (i.e., have the same dates and times) with each 
other or any course offerings that the professor has previously signed up to teach.  If there is no conflict, the 
system updates the course offering information for each offering the professor selects (i.e., records the professor 
as the instructor for the course offering). 

Alternative Flows 

No Course Offerings Available 
If, in the Basic Flow, the professor is not eligible to teach any course offerings in the upcoming semester, 
the system will display an error message.  The professor acknowledges the message and the use case ends. 

Schedule Conflict 
If the systems find a schedule conflict when trying to establish the course offerings the Professor should 
take, the system will display an error message indicating that a schedule conflict has occurred.  The system 
will also indicate which are the conflicting courses.  The Professor can either resolve the schedule conflict 
(i.e., by canceling his selection to teach one of the course offerings), or cancel the operation, in which case, 
any selections will be lost, and the use case ends. 

Course Catalog System Unavailable 
If the system is unable to communicate with the Course Catalog System, the system will display an error 
message to the Student.  The Student acknowledges the error message, and the use case terminates. 

Course Registration Closed 
When the use case starts, if it is determined that registration for the current semester has been closed, a 
message is displayed to the Professor, and the use case terminates.  Professors cannot change the course 
offerings they teach after registration for the current semester has been closed.  If a professor change is 
needed after registration has been closed, it is handled outside the scope of this system. 

Special Requirements 
None. 

Pre-Conditions 
The Professor must be logged onto the system before this use case begins. 

  Copyright IBM Corp. 2004 Page 16 
 



Section 1: Course Registration Requirements 
 

Post-Conditions 
If the use case was successful, the course offerings a Professor is scheduled to teach have been updated.  Otherwise, 
the system state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 17 
 



Section 1: Course Registration Requirements 
 

  

Submit Grades 

Brief Description 
This use case allows a Professor to submit student grades for one or more classes completed in the previous 
semester. 

Flow of Events 

Basic Flow  
This use case starts when a Professor wishes to submit student grades for one or more classes completed in the 
previous semester. 

1. The system displays a list of course offerings the Professor taught in the previous semester. 

2. The Professor selects a course offering. 

3. The system retrieves a list of all students who were registered for the course offering.  The system displays each 
student and any grade that was previously assigned for the offering. 

4. For each student on the list, the Professor enters a grade: A, B, C, D, F, or I.  The system records the student’s 
grade for the course offering.  If the Professor wishes to skip a particular student, the grade information can be 
left blank and filled in at a later time.  The Professor may also change the grade for a student by entering a new 
grade. 

Alternative Flows 

No Course Offerings Taught 
If, in the Basic Flow, the Professor did not teach any course offerings in the previous semester, the system 
will display an error message.  The Professor acknowledges the message, and the use case ends. 

Special Requirements 
None. 

Pre-Conditions 
The Professor must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, student grades for a course offering are updated.  Otherwise, the system state is 
unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 18 
 



Section 1: Course Registration Requirements 
 

  

View Report Card 

Brief Description 
This use case allows a Student to view his/her report card for the previously completed semester. 

Flow of Events 

Basic Flow  
This use case starts when a Student wishes to view his/her report card for the previously completed semester. 

1. The system retrieves and displays the grade information for each of the course offerings the Student completed 
during the previous semester. 

2. When the Student indicates that he/she is done viewing the grades, the use case terminates. 

Alternative Flows 

No Grade Information Available 
If, in the Basic Flow, the system cannot find any grade information from the previous semester for the 
Student, a message is displayed.  Once the Student acknowledges the message, the use case terminates. 

Special Requirements 
None. 

Pre-Conditions 
The Student must be logged onto the system before this use case begins. 

Post-Conditions 
The system state is unchanged by this use case. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 19 
 



Section 1: Course Registration Requirements 
 

 

  Copyright IBM Corp. 2004 Page 20 
 



 
 

IBM Rational Software 
 

 
 

Section 2: Payroll Requirements 
 

Version 2004 

  Copyright IBM Corp. 2004 Page 21 
 



Section 2: Payroll Requirements 
 

Problem Statement 
 
As the head of Information Technology at Acme, Inc., you are tasked with building a new payroll system to replace 
the existing system, which is hopelessly out of date. Acme needs a new system to allow employees to record 
timecard information electronically and automatically generate paychecks based on the number of hours worked and 
total amount of sales (for commissioned employees). 
 
The new system will be state of the art and will have a Windows-based desktop interface to allow employees to 
enter timecard information, enter purchase orders, change employee preferences (such as payment method), and 
create various reports. The system will run on individual employee desktops throughout the entire company.  For 
reasons of security and auditing, employees can only access and edit their own timecards and purchase orders.  
 
The system will retain information on all employees in the company (Acme currently has around 5,000 employees 
world-wide). The system must pay each employee the correct amount, on time, by the method that they specify (see 
possible payment methods described later). Acme, for cost reasons, does not want to replace one of their legacy 
databases, the Project Management Database, which contains all information regarding projects and charge 
numbers. The new system must work with the existing Project Management Database, which is a DB2 database 
running on an IBM mainframe. The Payroll System will access, but not update, information stored in the Project 
Management Database.  
 
Some employees work by the hour, and they are paid an hourly rate. They submit timecards that record the date and 
number of hours worked for a particular charge number. If someone works for more than 8 hours, Acme pays them 
1.5 times their normal rate for those extra hours. Hourly workers are paid every Friday. 
 
Some employees are paid a flat salary. Even though they are paid a flat salary, they submit timecards that record the 
date and hours worked.  This is so the system can keep track of the hours worked against particular charge numbers.  
They are paid on the last working day of the month. 
 
Some of the salaried employees also receive a commission based on their sales. They submit purchase orders that 
reflect the date and amount of the sale. The commission rate is determined for each employee, and is one of 10%, 
15%, 25%, or 35%. 
 
One of the most requested features of the new system is employee reporting. Employees will be able to query the 
system for number of hours worked, totals of all hours billed to a project (i.e., charge number), total pay received 
year-to-date, remaining vacation time, etc. 
 
Employees can choose their method of payment. They can have their paychecks mailed to the postal address of their 
choice, or they can request direct deposit and have their paycheck deposited into a bank account of their choosing. 
The employee may also choose to pick their paychecks up at the office. 
 
The Payroll Administrator maintains employee information.  The Payroll Administrator is responsible for adding 
new employees, deleting employees and changing all employee information such as name, address, and payment 
classification (hourly, salaried, commissioned), as well as running administrative reports. 
 
The payroll application will run automatically every Friday and on the last working day of the month. It will pay the 
appropriate employees on those days. The system will be told what date the employees are to be paid, so it will 
generate payments for records from the last time the employee was paid to the specified date. The new system is 
being designed so that the payroll will always be generated automatically, and there will be no need for any manual 
intervention. 
 

  Copyright IBM Corp. 2004 Page 22 
 



Section 2: Payroll Requirements 
 

Glossary 
Introduction 

This document is used to define terminology specific to the problem domain, explaining terms, which may 
be unfamiliar to the reader of the use-case descriptions or other project documents.  Often, this document 
can be used as an informal data dictionary, capturing data definitions so that use-case descriptions and 
other project documents can focus on what the system must do with the information. 

Definitions 
The glossary contains the working definitions for the key concepts in the Payroll System. 

Bank System 
Any bank(s) to which direct deposit transactions are sent. 

Employee 
A person that works for the company that owns and operates the payroll system (Acme, Inc.) 

Payroll Administrator 
The person responsible for maintaining employees and employee information in the system. 

Project Management Database 
The legacy database that contains all information regarding projects and charge numbers. 

System Clock 
The internal system clock that keeps track of time. The internal clock will automatically run the payroll at 
the appropriate times. 

Pay Period 
The amount of time over which an employee is paid. 

Paycheck 
A record of how much an employee was paid during a specified Pay Period. 

Payment Method 
How the employee is paid, either pick-up, mail, or direct deposit. 

Timecard 
A record of hours worked by the employee during a specified pay period. 

Purchase Order 
A record of a sale made by an employee. 

Salaried Employee 
An employee that receives a salary. 

Commissioned Employee 
An employee that receives a salary plus commissions. 

  Copyright IBM Corp. 2004 Page 23 
 



Section 2: Payroll Requirements 
 

Hourly Employee 
An employee that is paid by the hour. 

  Copyright IBM Corp. 2004 Page 24 
 



Section 2: Payroll Requirements 
 

Supplementary Specification  
Objectives 

The purpose of this document is to define requirements of the Payroll System.  This Supplementary 
Specification lists the requirements that are not readily captured in the use cases of the use-case model. The 
Supplementary Specifications and the use-case model together capture a complete set of requirements on 
the system. 

Scope 
This Supplementary Specification applies to the Payroll System, which will be developed by the OOAD 
students. 

This specification defines the non-functional requirements of the system; such as reliability, usability, 
performance, and supportability as well as functional requirements that are common across a number of use 
cases. (The functional requirements are defined in the Use Case Specifications.). 

References 
None. 

Functionality 
None. 

Usability  
None. 

Reliability  
The main system must be running 98% of the time. It is imperative that the system be up and running 
during the times the payroll is run (every Friday and the last working day of the month). 

Performance 
The system shall support up to 2000 simultaneous users against the central database at any given time, and 
up to 500 simultaneous users against the local servers at any one time.  

Supportability 
None. 

Security 
The system should prevent employees from changing any timecards other than their own. Additionally, for 
security reasons, only the Payroll Administrator is allowed to change any employee information with the 
exception of the payment delivery method. 

Design Constraints 
The system shall integrate with an existing legacy system, the Project Management Database, which is a 
DB2 database running on an IBM mainframe. 

The system shall interface with existing bank systems via an electronic transaction interface (NOTE: THE 
FORMAL INTERFACES WITH THE EXTERNAL BANK SYSTEM WOULD NEED TO BE DEFINED 
EARLY IN THE PROCESS AND DEFINED HERE OR IN A SEPARATE SUPPORTING DOCUMENT. 
SUCH A DEFINITION IS OUT OF THE SCOPE OF THIS COURSE.) 

The system shall provide a Windows-based desktop interface. 

  Copyright IBM Corp. 2004 Page 25 
 



Section 2: Payroll Requirements 
 

Use-Case Model 
Payroll System Use-Case Model Main Diagram 

 
 

  Copyright IBM Corp. 2004 Page 26 
 



Section 2: Payroll Requirements 
 

Create Administrative Report 

Brief Description 
The use case allows the Payroll Administrator to create either a “Total Hours Worked” or “Pay Year-to-Date” 
report.  

Flow of Events 

Basic Flow  
The use case begins when the Payroll Administrator requests that the system create an administrative report. 

1. The system requests that the Payroll Administrator specify the following report criteria: 

- Report Type (either total hours worked or pay year-to-date), 
- Begin and end dates for the report,  
- Employee name(s) 

2. Once the Payroll Administrator provides the requested information, the system provides the Payroll 
Administrator with a report satisfying the report criteria. 

3. The Payroll Administrator may then request that the system save the report.  At which time, the system requests 
the Payroll Administrator to provide the name and location for saving the report.  

4. Once the Payroll Administrator provides the requested information and confirms the decision to save the report, 
the system saves the report to the specified name and location. 

5. If the Payroll Administrator did not elect to save the report, the report is discarded. 

Alternative Flows 

Requested Information Unavailable 
If in the Basic Flow, the requested information is unavailable, the system will display an error message. 
The Payroll Administrator can choose to either return to the beginning of the Basic Flow, or cancel the 
operation, at which point the use case ends. 

Invalid Format or Insufficient Information 
If, in the Basic Flow, the Payroll Administrator has not specified sufficient information to create the 
selected report, the system will prompt the actor for the missing information. The Payroll Administrator can 
either enter the missing information or choose to cancel the operation, at which point the use case ends. 

Special Requirements 
None. 

Pre-Conditions 
The Payroll Administrator must be logged onto the system in order for this use case to begin. 

Post-Conditions 
The system state is unchanged by this use case. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 27 
 



Section 2: Payroll Requirements 
 

 Create Employee Report 

Brief Description 
The use case allows the Employee to create a “Total Hours Worked,” “Total Hours Worked for a Project”, 
“Vacation/Sick Leave,” or “Total Pay Year-to-Date” report. 

Flow of Events 

Basic Flow  
This use case starts when the Employee wishes to create a “Total Hours Worked,” “Total Hours Worked for a 
Project”, “Vacation/Sick Leave,” or “Total Pay Year-to-Date” report. 

1. The system requests that the Employee specify the following report criteria: 

- Report Type (either “Total Hours Worked,” “Total Hours Worked for a Project”, “Vacation/Sick Leave,”  or 
“Total Pay Year-to-Date”) 
- Begin and end dates for the report 

2. If the Employee selected the “Total Hours Worked for a Project” report, the system retrieves and displays a list 
of the available charge numbers from the Project Management Database.  The system then requests that the 
Employee select a charge number. 

3. Once the Employee provides the requested information, the system provides the Employee with a report 
satisfying the report criteria. 

4. The Employee may then request that the system save the report.  At which time, the system requests the 
Employee to provide the name and location for saving the report. 

5. Once the Employee provides the requested information and confirms the decision to save the report, the system 
saves the report to the specified name and location. 

6. If the Employee did not elect to save the report, the report is discarded. 

Alternative Flows 

Requested Information Unavailable 
If, in the Basic Flow, the requested information is unavailable, the system will display an error message. 
The Employee can choose to either return to the beginning of the Basic Flow, or cancel the operation, at 
which point the use case ends. 

Invalid Format or Insufficient Information 
If, in the Basic Flow, the Employee has not specified sufficient information to create the selected report, 
the system will prompt the actor for the missing information. The Employee can either enter the missing 
information or choose to cancel the operation, at which point the use case ends. 

Special Requirements 
None. 

Pre-Conditions 
The Employee must be logged onto the system before this use case begins. 

Post-Conditions 
The system state is unchanged by this use case. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 28 
 



Section 2: Payroll Requirements 
 

  

Login  

Brief Description 
This use case describes how a user logs into the Payroll System. 

Flow of Events 

Basic Flow  
This use case starts when the actor wishes to Login to the Payroll System. 

1. The actor enters his/her name and password. 

2. The system validates the entered name and password and logs the actor into the system.  

Alternative Flows 

Invalid Name/Password 
If, in the Basic Flow, the actor enters an invalid name and/or password, the system displays an error 
message. The actor can choose to either return to the beginning of the Basic Flow or cancel the login, at 
which point the use case ends. 

Special Requirements 
None. 

Pre-Conditions 
The system is in the login state and has the login screen displayed. 

Post-Conditions 
If the use case was successful, the actor is now logged into the system.  If not, the system state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 29 
 



Section 2: Payroll Requirements 
 

  

Maintain Employee Information 

Brief Description 
This use case allows the Payroll Administrator to maintain employee information. This includes adding, changing, 
and deleting employee information from the system. 

Flow of Events 

Basic Flow  
This use case starts when the Payroll Administrator wishes to add, change, and/or delete employee information from 
the system. 

1. The system requests that the Payroll Administrator specify the function he/she would like to perform (either 
Add an Employee, Update an Employee, or Delete an Employee) 

2. Once the Payroll Administrator provides the requested information, one of the sub flows is executed. 
If the Payroll Administrator selected “Add an Employee“, the Add an Employee subflow is executed. 
If the Payroll Administrator selected “Update an Employee“, the Update an Employee subflow is executed. 
If the Payroll Administrator selected “Delete an Employee“, the Delete an Employee subflow is executed. 

Add an Employee 
1. The system requests that the Payroll Administrator enter the employee information. This includes: 

2. name 
- employee type (hour, salaried, commissioned) 
- mailing address 
- social security number 
- standard tax deductions 
- other deductions (401k, medical) 
- phone number 
- hourly rate (for hourly employees) 
- salary (for salaried and commissioned employees) 
- commission rate (for commissioned employees) 
- hour limit (some employees may not be able to work overtime) 

3. Once the Payroll Administrator provides the requested information, the system generates and assigns a 
unique employee id number to the employee and sets the paycheck delivery method to default of 
“pickup”.  The employee is added to the system. 

4. The system provides the Payroll Administrator with the new employee id. 

Update an Employee 
1. The system requests that the Payroll Administrator enter the employee id. 

2. The Payroll Administrator enters the employee id.  The system retrieves and displays the employee 
information. 

3. The Payroll Administrator makes the desired changes to the employee information. This includes any 
of the information specified in the Add an Employee sub-flow. 

4. Once the Payroll Administrator updates the necessary information, the system updates the employee 
record with the updated information. 

Delete an Employee 
1. The system requests that the Payroll Administrator specify the employee id.   

  Copyright IBM Corp. 2004 Page 30 
 



Section 2: Payroll Requirements 
 

2. The Payroll Administrator enters the employee id.  The system retrieves and displays the employee 
information. 

3. The system prompts the Payroll Administrator to confirm the deletion of the employee. 

4. The Payroll Administrator verifies the deletion. 

5. The system marks the employee record for deletion. The next time the payroll is run, the system will 
generate a final paycheck for the deleted employee and remove the employee from the system. 

Alternative Flows 

Employee Not Found 
If in the Update an Employee or Delete an Employee sub-flows, an employee with the specified id 
number does not exist, the system displays an error message. The Payroll Administrator can then enter a 
different id number or cancel the operation, at which point the use case ends. 

Delete Cancelled 
If in the Delete An Employee sub-flow, the Payroll Administrator decides not to delete the employee, the 
delete is cancelled and the Basic Flow is re-started at the beginning. 

Special Requirements 
None. 

Pre-Conditions 
The Payroll Administrator must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, the employee information is added, updated, or deleted from the system.  Otherwise, 
the system state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 31 
 



Section 2: Payroll Requirements 
 

  

Maintain Purchase Order 

Brief Description 
This use case allows a Commissioned Employee to record and maintain purchase orders.  This includes adding, 
changing, and deleting purchase orders.  Commissioned employees must record each of their purchase orders in 
order to receive commissions. 

Flow of Events 

Basic Flow  
This use case starts when the Commissioned Employee wishes to add, change, and/or delete purchase order 
information from the system. 

1. The system requests that the Commissioned Employee specify the function he/she would like to perform (either 
Create a Purchase Order, Update a Purchase Order, or Delete a Purchase Order) 

2. Once the Commissioned Employee provides the requested information, one of the sub flows is executed. 
If the Commissioned Employee selected “Create a Purchase Order “, the Create a Purchase Order subflow is 
executed. 
If the Commissioned Employee selected “Update a Purchase Order “, the Update a Purchase Order subflow is 
executed. 
If the Commissioned Employee selected “Delete a Purchase Order “, the Delete a Purchase Order subflow is 
executed. 

Create a Purchase Order 
1. The system requests that the Commissioned Employee enter the purchase order information. This 

includes: 

- customer point of contact 
- customer billing address 
- product(s) purchased 
- date 

2. Once the Commissioned Employee provides the requested information, the system generates and 
assigns a unique purchase order number to the purchase order.  The purchase order is added to the 
system for the Commissioned Employee. 

3. The system provides the Commissioned Employee with the new purchase order id. 

Update a Purchase Order 
1. The system requests that the Commissioned Employee enter the purchase order id. 

2. The Commissioned Employee enters the purchase order id.   

3. The system retrieves the purchase order associated with the purchase order id. 

4. The system verifies that the purchase order is a purchase order for the Commissioned Employee, and 
that the purchase order is open. 

5. The system displays the purchase order. 

6. The Commissioned Employee makes the desired changes to the purchase order information. This 
includes any of the information specified in the Create a Purchase Order sub flow. 

7. Once the Commissioned Employee updates the necessary information, the system updates the purchase 
order with the updated information. 

  Copyright IBM Corp. 2004 Page 32 
 



Section 2: Payroll Requirements 
 

Delete a Purchase Order 
1. The system requests that the Commissioned Employee specify the purchase order id. 

2. The Commissioned Employee enters the purchase order id.  

3. The system retrieves the purchase order associated with the purchase order id. 

4. The system verifies that the purchase order is a purchase order for the Commissioned Employee, and 
that the purchase order is open. 

5. The system displays the purchase order. 

6. The system prompts the Commissioned Employee to confirm the deletion of the purchase order. 

7. The Commissioned Employee verifies the deletion. 

8. The system removes the purchase order from the system. 

Alternative Flows 

Purchase Order Not Found 
If, in the Update a Purchase Order or Delete an Purchase Order sub-flows, an purchase order with the 
specified id number does not exist, the system displays an error message. The Commissioned Employee 
can then enter a different id number or cancel the operation, at which point the use case ends. 

Invalid Access to a Purchase Order 
If, in the Update a Purchase Order or Delete a Purchase Order sub-flows, the Commissioned Employee 
attempts to access a purchase order that is not his, the system displays an error message. The 
Commissioned Employee can then enter a different id number or cancel the operation, at which point the 
use case ends. 

Purchase Order is Closed 
If, in the Update a Purchase Order or Delete a Purchase Order sub-flows, the Commissioned Employee 
attempts to access a purchase order that is closed, the system displays an error message. The Commissioned 
Employee can then enter a different id number or cancel the operation, at which point the use case ends. 

Delete Cancelled 
If, in the Delete A Purchase Order sub-flow, the Commissioned Employee decides not to delete the 
purchase order, the delete is cancelled and the Basic Flow is re-started at the beginning. 

Special Requirements 
None. 

Pre-Conditions 
The Commissioned Employee must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, the purchase order information is added, updated, or deleted from the system.  
Otherwise, the system state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 33 
 



Section 2: Payroll Requirements 
 

  

Maintain Timecard 

Brief Description 
This use case allows the Employee to update and submit timecard information. Hourly and salaried employees must 
submit weekly timecards recording all hours worked that week and which projects the hours are billed to. An 
Employee can only make changes to the timecard for the current pay period and before the timecard has been 
submitted. 

Flow of Events 

Basic Flow  
This use case starts when the Employee wishes to enter hours worked into his current timecard. 

1. The system retrieves and displays the current timecard for the Employee.  If a timecard does not exist for the 
Employee for the current pay period, the system creates a new one.  The start and end dates of the timecard are 
set by the system and cannot be changed by the Employee. 

2. The system retrieves and displays the list of available charge numbers from the Project Management Database. 

3. The Employee selects the appropriate charge numbers and enters the hours worked for any desired date (within 
the date range of the timecard). 

4. Once the Employee has entered the information, the system saves the timecard. 

Submit Timecard 
1. At any time, the Employee may request that the system submit the timecard. 

2. At that time, the system assigns the current date to the timecard as the submitted date and changes the 
status of the timecard to “submitted.”  No changes are permitted to the timecard once it has been 
submitted. 

3. The system validates the timecard by checking the number of hours worked against each charge 
number. The total number of hours worked against all charge numbers must not exceed any limit 
established for the Employee (for example, the Employee may not be allowed to work overtime). 

4. The system retains the number of hours worked for each charge number in the timecard. 

5. The system saves the timecard. 

6. The system makes the timecard read-only, and no further changes are allowed once the timecard is 
submitted. 

Alternative Flows 

Invalid Number of Hours 
If, in the Basic Flow, an invalid number of hours is entered for a single day (>24), or the number entered 
exceeds the maximum allowable for the Employee, the system will display an error message and prompt 
for a valid number of hours. The Employee must enter a valid number, or cancel the operation, in which 
case the use case ends. 

Timecard Already Submitted 
If, in the Basic Flow, the Employee’s current timecard has already been submitted, the system displays a 
read-only copy of the timecard and informs the Employee that the timecard has already been submitted, so 
no changes can be made to it.  The Employee acknowledges the message and the use case ends. 

  Copyright IBM Corp. 2004 Page 34 
 



Section 2: Payroll Requirements 
 

Project Management Database Not Available 
If, in the Basic Flow, the Project Management Database is not available, the system will display an error 
message stating that the list of available charge numbers is not available.  The Employee acknowledges the 
error and may either choose to continue (without selectable charge numbers), or to cancel (any timecard 
changes are discarded and the use case ends). 
Note: Without selectable charge numbers, the Employee may change hours for a charge number already 
listed on the timecard, but he/she may not add hours for a charge number that is not already listed. 

Special Requirements 
None. 

Pre-Conditions 
The Employee must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, the Employee timecard information is saved to the system.  Otherwise, the system 
state is unchanged. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 35 
 



Section 2: Payroll Requirements 
 

  

Run Payroll 

Brief Description 
The use case describes how the payroll is run every Friday and the last working day of the month. 

Flow of Events 

Basic Flow  
1. The use case begins when it’s time to run the payroll. The payroll is run automatically every Friday and the last 

working day of the month. 

2. The system retrieves all employees who should be paid on the current date. 

3. The system calculates the pay using entered timecards, purchase orders, employee information (e.g., salary, 
benefits, etc.) and all legal deductions. 

4. If the payment delivery method is mail or pick-up, the system prints a paycheck. 

5. If the payment delivery method is direct deposit, the system creates a bank transaction and sends it to the Bank 
System for processing. 

6. The use case ends when all employees receiving pay for the desired date have been processed. 

Alternative Flows 

Bank System Unavailable 
If the Bank System is down, the system will attempt to send the bank transaction again after a specified 
period.  The system will continue to attempt to re-transmit until the Bank System becomes available. 

Deleted Employees 
After the payroll for an Employee has been processed, if the employee has been marked for deletion (see 
the Maintain Employee use case), then the system will delete the employee. 

Special Requirements 
None. 

Pre-Conditions 
None. 

Post-Conditions 
Payments for each employee eligible to be paid on the current date have been processed. 

Extension Points 
None.  

  Copyright IBM Corp. 2004 Page 36 
 



Section 2: Payroll Requirements 
 

  

Select Payment Method 

Brief Description 
This use case allows an Employee to select a payment method.  The payment method controls how the Employee 
will be paid.  The Employee may choose to either: pick up his check directly, receive it in the mail, or have it 
deposited directly into a specified bank account. 

Flow of Events 

Basic Flow  
This use case starts when the Employee wishes to select a payment method. 

1. The system requests that the Employee specify the payment method he would like (either: “pick up”, “mail”, or 
“direct deposit”). 

2. The Employee selects the desired payment method.   

3. If the Employee selects the “pick-up” payment method, no additional information is required.   
If the Employee selects the “mail” payment method, the system requests that the Employee specify the address 
that the paycheck will be mailed to. 
If the Employee selects the “direct deposit” method, the system requests that the Employee specify the bank 
name and account number. 

4. Once the Employee provides the requested information, the system updates the Employee information to reflect 
the chosen payment method. 

Alternative Flows 

Employee Not Found 
If, in the Basic Flow, information for the employee could not be located, the system displays an error 
message, and the use case ends. 

Special Requirements 
None. 

Pre-Conditions 
The Employee must be logged onto the system before this use case begins. 

Post-Conditions 
If the use case was successful, the payment method for the Employee is updated in the system.  Otherwise, the 
system state is unchanged. 

Extension Points 
None. 

  Copyright IBM Corp. 2004 Page 37 
 



Section 2: Payroll Requirements 
 

 

  Copyright IBM Corp. 2004 Page 38 
 



 
 

IBM Rational Software 
 

 
 

Section 3: Payroll Architecture Handbook 
 

Version 2004

  Copyright IBM Corp. 2004 Page 39 
 



Section 3: Payroll Architecture Handbook 

 
Payroll Architecture Handbook 

Description  
This document supplements the course material for the Payroll Exercise used in the Object-Oriented Analysis and 
Design Using the UML course.  It provides the architectural givens that support the development of the Payroll 
System design model during the course exercises.  
This is because the OOAD course concentrates on demonstrating how architecture affects the design model.  OOAD 
is NOT an architecture course.  The OOAD course gives the students an appreciation of what an architecture is and 
why it is important. 
 
In some sections of this document, the architecture is represented textually.  The students, as part of the exercises 
throughout the course, will generate the associated UML diagrams.  Thus, for the UML representation of the 
architecture, see the Payroll Exercise Solution. 
 
Note: A SUBSET OF THE PAYROLL SYSTEM IS PROVIDED.  Concentration is on the elements needed to  
support the Login, Maintain Timecard and Run Payroll use cases. 

Architectural Mechanisms 

Analysis Mechanisms 
Persistency: A means to make an element persistent (i.e., exist after the application that created it ceases to exist). 
Distribution: A means to distribute an element across existing nodes of the system. 
Note: For this course, it has been decided that the business logic will be distributed. 
Security: A means to control access to an element. 
Legacy Interface: A means to access a legacy system with an existing interface. 

Analysis-to-Design-to-Implementation Mechanisms Map  
 
Analysis Mechanism Design Mechanisms Implementation Mechanisms 
Persistency OODBMS (new data) ObjectStore 
Persistency RDBMS (data from 

legacy database) 
JDBC to Ingres 

Distribution Remote Method 
Invocation (RMI) 

Java 1.1 from Sun 

Security  Reverse Engineered Secure.java 
and UserContextRemoteObject 
components 

Legacy Interface   
 
Note: Remote Method Invocation (RMI) is a Java-specific mechanism that allows client objects to invoke operations 
on server objects as though they were local.  Native Java RMI comes with Sun's Java 1.1. 

  Copyright IBM Corp. 2004 Page 40 
 



Section 3: Payroll Architecture Handbook 

Implementation Mechanisms 

Security  

Static View: Security 
  

ISecureData

+ getUniqueId() : UniqueId

(from Secure Interfaces)

<<Interface>>
SecurityAccess

+ isReadable() : Boolean
+ isWriteable() : Boolean
+ isDeleteable() : Boolean
+ makeReadable()
+ makeWriteable()
+ makeDeleteable()
+ new()

(from Secure Interfaces)

SampleSecureClass

+ getUniqueID()

<<role>>

UserSecurityContext

+ setAccess(toData : SecureData, access : SecurityAccess)
+ getAccess(toData : SecureData) : SecurityAccess
+ getUserId() : UniqueId
+ UserSecurityContext(userId : UniqueId)
+ checkInternalTables()

(f rom Security Manager)

UniqueId

+ generate() :  UniqueId
+ asString() : String
+ UniqueId(value :  String)

(from Secure Interfaces)

MainApplicationForm

+ start()
+ setupSecurityContext()
+ displayAvailOperations()

(f ro m GUI  Fra mework)

ISecureUser

+ setAccess(toData : ISecureData, access : SecurityAccess)
+ getAccess(toData : ISecureData) : SecurityAccess
+ getUserId() : UniqueId
+ new(forUser : UserID)

(from Secure Interfaces)

<<Interface>>

0..1

1

0..1

1

LoginForm

+ open()
+ enterUserName()
+ validateUserIDPassword() : boolean
+ enterPassword()
+ logInUser()
+ setupSecurityContext()
+ getUserContext() : ISecureUser

(from GUI Framework)

0..11 0..11

0..1
0..1

0..1
0..1

  

Class Descriptions 
ISecureData : Analysis Mechanisms: 
- Security  
 
SecurityAccess : Analysis Mechanisms: 
- Security  
 
SampleSecureClass :   
 
UserSecurityContext : Analysis Mechanisms: 
- Security  
 
UniqueId : Analysis Mechanisms: 
- Security  
 
MainApplicationForm : Requirements Traceability: 
- Usability: The desktop user-interface shall be Windows 95/98 compliant.  
 
ISecureUser : Analysis Mechanisms: 
- Security  

  Copyright IBM Corp. 2004 Page 41 
 



Section 3: Payroll Architecture Handbook 

 
LoginForm : Analysis Mechanisms: 
- Security 
 
Requirements Traceability: 
- Usability: The desktop user-interface shall be Windows 95/98 compliant.  
 
 
 

  Copyright IBM Corp. 2004 Page 42 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: Secure User Set-Up 
  

Any User  : 
MainApplicationForm

 : LoginForm  : ISecureUser

We did not expand on 
validation since it was a 
reverse engineered 
component

1. start( )

5. setupSecurityContext( )

1.1. open( )

2. enterUserName( )

3. enterPassword( )

4. logInUser( )

4.2. setupSecurityContext( )

5.1. getUserContext( )

4.2.1. new(UserID)

The 
MainApplicationForm 
retains the secure 
user context for later 
processing by the 
user.

Display the 
operations/functions 
that the application 
provides.

4.1. validateUserIDPassword( )

[  login successful ]

6. close( )

7. displayAvailOperations( )

  

  Copyright IBM Corp. 2004 Page 43 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: Secure Data Access  
 

Secure 
Clien

 :  : 
SecurityAcce

1. 

2. 

3. 

4. 

After retrieving an object that 
SecureData interface, the Secure 
Client should retrieve the security 
information for the secure object 
for the current user and compare 
make sure the current user
view/edit/delete the AND/O

AND/O

  

  Copyright IBM Corp. 2004 Page 44 
 



Section 3: Payroll Architecture Handbook 

Persistency - RDBMS - JDBC   

Static View: Persistency JDBC 
  

PersistencyClient
(from SamplePersistency Client)

<<role>>

For JDBC, a client will work with a DBClass to read and write persistent data. 
The DBClass is responsible for accesing the JDBC database using the 
DriverManager class. Once a database connection is opened, the DBClass 
can then create SQL statements that will be sent to the underlying RDBMS 
and executed using the Statement class. The results of the SQL query is 
returned in a ResultSet class object.

PersistentClass

+ getData()
+ setData()
+ command()
+ new()

(from SamplePersistentClass)

<<role>>

PersistentClassList

+ new()
+ add(c : PersistentClass)

(from SamplePersistentClass)

<<role>>

0..*
1

0..*
1

Statement

+ executeQuery()
+ executeUpdate()

(from java.sql)

DBClass

+ create() : PersistentClass
+ read(searchCriteria : string) : PersistentClassList
+ update(c : PersistentClass)
+ delete(c : PersistentClass)

<<role>>

Connection

+ createStatement()

(from java.sql)

1

1

1

1

ResultSet

+ getString()

(from java.sql)

DriverManager

+ getConnection()

(from java.sql)

  

  Copyright IBM Corp. 2004 Page 45 
 



Section 3: Payroll Architecture Handbook 

Class Descriptions 
PersistencyClient : An example of a client of a persistent class.  
 
PersistentClass : An example of a class that's persistent.  
 
PersistentClassList :   
 
Statement : The class used for executing a static SQL statement and obtaining the results produced by it.  
SQL statements without parameters are normally executed using Statement objects.  
 
DBClass : A sample of a class that would be responsible for making another class persistent.  
Every Class that's persistent will have a corresponding DBClass (e.g., Student will have a DBStudent 
class). 
 
With an RDBMS, you need a mapping of objects/classes to tables, and you must recreate the 
(association/aggregation) structures.  DBClass is a database interface class which understands the OO-to-
RDBMS mapping and has the behavior to interface with the RDBMS. This database interface class is used 
whenever a persistent class needs to be created, accessed, or deleted.  The database interface class flattens 
the object and writes it to the RDBMS and reads the object data  from the RDBMS and builds the object.    
 
Connection : A connection (session) with a specific database. Within the context of a Connection, SQL 
statements are executed, and results are returned.  
 
ResultSet : A ResultSet provides access to a table of data. A ResultSet object is usually generated by 
executing a Statement.   
 
DriverManager : The basic service for managing a set of JDBC drivers.   
 
 
 

Dynamic View: JDBC RDBMS Read 
 

  Copyright IBM Corp. 2004 Page 46 
 



Section 3: Payroll Architecture Handbook 

 
 

  Copyright IBM Corp. 2004 Page 47 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: JDBC RDBMS Update  
 

 : DBClass :  
PersistencyClien

 : 
PersistentClas

 : Connection  : Statement

JDBC RDBMS 

1. 

1.2. createStatement( 

1.3. 

1.1. getData( )

To update a class, the client asks the DBClass to update. The DBClass retriev
from the existing PersistentClass object, and creates a new Statement using 
connection class createStatement() operation. Once the Statement is built, the
executed, and the database is updated with the new data from the 

execute SQL 
statement

Retrieve the data to be 
written to the database, 
so it can be 

  

  Copyright IBM Corp. 2004 Page 48 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: JDBC RDBMS Create  

 : 
PersistencyClient

 : DBClass  : 
PersistentClass

 : Connect ion  : Statement

JDBC RDBMS Create

1. create( )
1.1. new( )

1.3. createStatement( )

1.4. executeUpdate(string)

1.2. getData( )

To create a new class, the client asks the DBClass to create the new class. The 
DBClass creates a new instance of Persistent Class with default values. The 
DBClass then creates a new Statement using the Connection class 
createStatement() operation. The statement is executed and the data is inserted 
into the database.

  

  Copyright IBM Corp. 2004 Page 49 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: JDBC RDBMS Delete  

 : 
PersistencyClient

 : DBClass  : Connection  : Statement

JDBC RDBMS Delete

1. delete(PersistentClass)

1.1. createStatement( )

1.2. executeUpdate(string)

To delete a class, the client asks the DBClass to delete a specific 
class instance. The DBClass creates a new statement using the 
Connection class createStatement() operation and formulates the 
correct SQL statement for the object instance that's passed in. The 
statement is executed and the data is removed from the database.

execute SQL 
statement

  

  Copyright IBM Corp. 2004 Page 50 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: JDBC RDBMS Initialize  

 : DBClass  : 
DriverManager

1. getConnection(url, user, pass)

JDBC RDBMS Initialize

To initialize the connection, the DBClass must load the 
appropriate driver by calling the DriverManager 
getConnection() operation with a URL, user, and password.

getConnection() attempts to establish a connection to the 
given database URL. The DriverManager attempts to select 
an appropriate driver from the set of registered JDBC 
drivers.

Parameters:
url - A database url of the form jdbc:subprotocol:subname
user - The database user on whose behalf the Connection 
is being made
password - The user's password

Returns a Connection to the URL   

  Copyright IBM Corp. 2004 Page 51 
 



Section 3: Payroll Architecture Handbook 

Persistency - OODBMS - ObjectStore  

Static View: Persistency – ObjectStore OODBMS 
  

Clients interface with the SampleDBManager class, which controls 
access to PersistentClass objects in the database. The 
SampleDBManager also cont rols user access,  registration,  and 
session management. The SampleDBManager might run as an 
applicat ion server that operates behind a web server and provides 
access to the database.

To access  a persistent object, the client  works with the 
SampleDBManager c lass. The client can create a new instance of 
the PersistentClass  with the "newPersistentClass( )"  operat ion, or 
invoke a command on the PersistentClass  with a "command( )" 
operat ion. In a real application,  the "command( )" operation would be 
replaced with operations from the Persis tentClass.

The client is responsible for initial izing and shutt ing down the 
database through the SampleDBManager class,  however the cl ient 
does not need to be aware of any of the details of the ObjectStore 
database.

In the context of the ObjectStore database, the Pers istentClass is 
considered the "root class".   If there were other root classes, there 
would be addit ional classes with associat ion relat ionships with the 
SampleDBManager.

From the ObjectStore manual: "Objects become persis tent  when 
they are referenced by other persis tent  objects. The applicat ion 
defines persistent roots and when it commits a t ransaction, 
PSE/PSE Pro finds all  objects reachable from pers istent roots and 
stores them in the database.
This is cal led persis tence by reachabili ty and it  helps to preserve the 
automatic s torage management semant ics of Java."

You define the PersistentClass  for persis tent  use the same way you 
define it  for transient use.   Other than the required import com.odi.* 
statement, there is almost no special code for pers istent use of the 
Persis tentClass.

PersistencyClient
(from SamplePersistency Client)

<<role>>

SampleDBManager

+ initialize()
+ command()
+ shutdown()
+ newPersis tentClass()
+ removePers istentClass()
+ getPers istentClassData()

<<role>>

0..*

1

0..*

1

PersistentClass

+ getData()
+ setData()
+ command()
+ new()

(from SamplePersistentClass)

<<role>>

  

Class Descriptions 
PersistencyClient : An example of a client of a persistent class.  
 
SampleDBManager : Responsible for providing access to the persistent objects. 
The SampleDBManager is an example of a class an ObjectStore user would write. It is a control class that 
provides a single entry point into a specific ObjectStore database. The user would add the appropriate 
operations to the class to access entities in the database. It is often implemented as a singleton, but doesn't 
have to be (if an application needs to have multiple instances of a database open at once, then each instance 
would have its own SampleDBManager). Both solutions would work, it just depends on how you want to 
do it.  
 
PersistentClass : An example of a class that's persistent.  
 

 

  Copyright IBM Corp. 2004 Page 52 
 



Section 3: Payroll Architecture Handbook 

Static View: Persistency - DBManager Detail  

The DBManager class contains most of the database-specific
code, such as starting and ending transactions. There are no
DBManager objects stored in the database, which means that the
DBManager class is not required to be persistence-capable.

The SampleDBManager class has a static members that keep
track of the database that is open. It also has a number of
static methods, each of which executes a transaction in the ObjectStore 
database.

Session

+ create()
+ join()
+ terminate()

(from com.odi)

Map

+ put(name : string, object : Object)
+ get(name : string) : Object
+ remove(name : string)
+ new()

(f ro m com.od i)

Database

+ open()
+ create()
+ createRoot(name : string, object : Object)
+ close()

(from com.odi)

Transaction

+ begin()
+ commit(retain : int)

(from com.odi)

ObjectStore

+ destroy(object : Object)

(from com.odi)

SampleDBManager

+ initialize()
+ command()
+ shutdown()
+ newPersistentClass() : PersistentClass
+ removePersistentClass(theClass : PersistentClass)
+ getPersistentClassData() : PersistentClass

<<role>>

11 11

1

1

1

1 1

1

1

1

1

0..*

1

0..*

1

1

1

1

You do not have to use the Map 
class as the collection.  You can 
use any number of collections 
that ObjectStore provides, or you 
can define your own.  We have 
chosen to use the Map.

  

Class Descriptions 
Session : The class that represents a database session. A session must be created in order to access the 
database and any persistent data. 
 
A session is the context in which PSE/PSE Pro databases are created or opened, and transactions can be 
executed. Only one transaction at a time can exist in a session.  
 
Map : A persistent map container classes that stores key/value pairs.  
 

  Copyright IBM Corp. 2004 Page 53 
 



Section 3: Payroll Architecture Handbook 

Database : The Database class represents an ObjectStore database. 
 
Before you begin creating persistent objects, you must create a database to hold the objects. In subsequent 
processes, you open the database to allow the process to read or modify the objects. To create a database, 
you call the static create() method on the Database class and specify the database name and an access 
mode.  
 
Transaction : An ObjectStore transaction. Manages a logical unit of work.  All persistent objects must be 
accessed within a transaction.  
 
ObjectStore : Defines system-level operations that are not specific to any database.  
 
SampleDBManager : Responsible for providing access to the persistent objects. 
The SampleDBManager is an example of a class an ObjectStore user would write. It is a control class that 
provides a single entry point into a specific ObjectStore database. The user would add the appropriate 
operations to the class to access entities in the database. It is often implemented as a singleton, but doesn't 
have to be (if an application needs to have multiple instances of a database open at once, then each instance 
would have it's own SampleDBManager). Both solutions would work, it just depends on how you want to 
do it.  
 
 
 

  Copyright IBM Corp. 2004 Page 54 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: ObjectStore – OODBMS Create 
  

 : 
PersistencyClient

 : 
SampleDBManager

 : Transaction  : 
PersistentClass

DatabaseRoot : 
Map

1. newPersistentClass( )
1.1. begin( )

1.2. new( )

1.4. commit(int)

constructor 
call

ObjectStore OODBMS Create

1.3. put(string, Object)

To create a new instance of PersistentClass in the database, the SampleDBManager 
first creates a transaction and then calls the constructor for PersistentClass. Once 
the class has been constructed the class is added to the database via the root 
"put()" operation. The transaction is then committed.

Pass in the unique key for the 
PersistentClass and the 
PersistentClass.
The PersistentClass will be stored in 
the Map, and subsequently, in the 
ObjectStore Database.

The root is 
the entry 
point into the  
Database.

  

  Copyright IBM Corp. 2004 Page 55 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: ObjectStore OODBMS Delete  

 : 
PersistencyClient

 : 
SampleDBManager

 : Transaction DatabaseRoot : 
Map

 : 
PersistentClass

 : ObjectStore

1. removePersistentClass(PersistentClass)

1.1.  begin( )

1.4. remove(string) Once the "parts" 
have been 
removed, remove 
the original class

1.6.  commit

ObjectStore OODBMS Delete

To delete an object from the database, the SampleDBManager first creates a new transaction, 
removes any constituent parts, and then removes the object using the database root "remove()" 
operation. The object is then completely removed from the ObjectStore database immediately via 
ObjectStore.destry ().  Once the object has been removed, the transaction is committed.

Thus, in ObjectStore, delete really has two steps -- removal from the container class that is the 
database in memory, and removal from the physical database.  that is because you want the deletion 
to occur right away, as opposed to being cached.

1.2. get(string)

Retrieve the instance 
to be removed, 
passing in the unique 
id of the 
PersistentClass to be 
deleted

1.3. getData( )

If the instance to be 
deleted has constituent 
parts (i.e., there's a 
composition between 
their associated 
classes), those parts 
must be retrieved and 
manually deleted.  This 
is necessary as it is not 
always the case that the 
parts are removed with 
the whole (only with 
composition are the 
lifetimes coincident).

1.5. destroy(Object)

Completely remove the instance 
from the ObjectStore database.  
this syncs up the cache and the 
physical database.
This forces the delete to happen 
right away, as opposed to being 
cached (you don't want 
something else to link to an 
object that is to be deleted).

The root  is 
the entry 
point  into the  
Database.

  

  Copyright IBM Corp. 2004 Page 56 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: ObjectStore OODBMS Read  

 : 
PersistencyClient

 : 
SampleDBManager

 : Transaction DatabaseRoot : 
Map

 : 
PersistentClass

Find the object in 
the database; pass 
in the unique key

Read the data from 
returned object 
object

ObjectStore OODBMS Read 

1. getPersistentClassData( )

1.1. begin( )

1.4. commit(RETAIN_HOLLOW)

1.2. get(string)

Start  a read-only 
t ransaction to ensure 
that  the object  isn't 
changed while we're 
reading it

1.3. getData(String)

To read an object , the SampleDBManager first creates a new read-only transaction then looks 
up the object using the Map "get()" operation. Once the object has been found it can be read with 
the "getData()" operation, and the transaction committed. RETAIN_HOLLOW is specified for the 
commit,. so the references to the object and the retrieved data can be used outside of the 
retrieval transaction.  Once the transaction is committed the object can then be updated.

Note: Even though RETAIN_HOLLOW is specified, it does not guarantee the integrity of the 
reference outside of the transaction.  There is still some risk that the reference could be outdated. 
RETAIN_HOLLOW basically says "I'm consciously taking such a risk".  If that option was not 
used, then the references would not be available.

Specify the 
RETAIN_HOLLOW option 
on the commit(), so that the 
references to the retrieved 
data can be used outside of 
the transaction.

The root is 
the entry 
point into the  
Database.

  

  Copyright IBM Corp. 2004 Page 57 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: ObjectStore OODBMS Update  

 : 
PersistencyClient

 : 
SampleDBManager

 : Transaction DatabaseRoot : 
Map

 : 
PersistentClass

Find the object in the 
database; pass in the 
unique key

Invoke the object 
command

ObjectStore OODBMS Update

1. command( )

1.1. begin( )

1.4. commit

1.2. get(string)

1.3. command( )

To update an object ,  the SampleDBManager first creates a new 
t ransaction then looks up the object using the Map "get()" operation. 
Once the object  has been found a command can be invoked on it . 
When the command is complete the t ransaction is committed.

A separate put() to the Map is not  necessary  as the get() operat ion 
returns a reference to the persistent object and any changes to that 
objec t, i f made in the contex t of a t ransaction,  are automatically 
committed to the database.

The root is 
the entry 
point into the  
Database.

  

  Copyright IBM Corp. 2004 Page 58 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: ObjectStore OODBMS Initialize  

 : 
PersistencyClient

 : 
SampleDBManager

 : Session  : Database  : Transact ion DatabaseRoot : 
Map

1. initial ize( )
1.1. create( )

1.2. join( )

1.3. create( )

1.4. begin( )

1.6. createRoot(string, Object)

1.7.  commit()

ObjectStore OODBMS Initialize

Once the session has been created and joined,  the SampleDBManager must open and create the new 
database. 

To create the database, the SampleDBManager creates a new transaction and creates the "root" of the 
database with the "createRoot()" operation.

The root is the entry point into the Database (the root class is the top-level class in the object database).   
It is  a "special" data st ructure (in the above example, a Map that contains instances of the root class and 
all “reachable” c lasses).   Any changes to this data structure that occur within the context of a transaction 
will be applied to the associated ObjectStore Database.  There may be multiple database roots. 

Once the root has been created, the t ransaction is committed.

1.5. new( )

Pass in the 
name of  the 
Map, as well 
as the Map 
itself (the map 
is an Object).

Create the Map that will 
serve as the database 
root.

The root is the entry point into the  
Database.  It is a "special" data 
structure.  Any changes to this 
data structure that occur within the 
context of a transaction will be 
applied to the associated 
ObjectStore Database.

  

  Copyright IBM Corp. 2004 Page 59 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: ObjectStore OODBMS Shutdown  

 : 
PersistencyClient

 : 
SampleDBManager

 : Sess ion : Database

ObjectStore OODBMS Shutdown

1. shutdown( )

1.2. terminate( )

1.1. c lose( )

To shutdown the database, the SampleDBManager must 
close the database and terminate the session.

  

  Copyright IBM Corp. 2004 Page 60 
 



Section 3: Payroll Architecture Handbook 

Distribution - RMI  

Static View: Distribution - RMI 
  

 

Class Descriptions 
Naming. :  
 * This is the bootstrap mechanism for obtaining references to remote 
 * objects based on Uniform Resource Locator (URL) syntax.  The URL 
 * for a remote object is specified using the usual host, port and 
 * name: 
 *<br> rmi://host:port/name 
 *<br> host = host name of registry  (defaults to current host) 
 *<br> port = port number of registry (defaults to the registry port number) 
 *<br>   name = name for remote object 
   
 
SampleDistributedClass : An example of a class that's distributed.  
 
Remote :   
 * The Remote interface serves to identify all remote objects. 
 * Any object that is a remote object must directly or indirectly implement 
 * this interface.  Only those methods specified in a remote interface are  
 * available remotely. <p> 
 * Implementation classes can implement any number of remote interfaces 
 * and can extend other remote implementation classes. 
  
For all classes that realize the Remote interface, a remote stub and a remote skeleton are created.  These 
classes handle the communication that must occur to support distribution.  

  Copyright IBM Corp. 2004 Page 61 
 



Section 3: Payroll Architecture Handbook 

 
SampleDistributedClassClient : An example of a client of a distributed class.  
 
SamplePassedData : An example of data that is passed to/from a distributed class.  
 
UnicastRemoteObject :   
 
ISampleDistributedClassInterface : An example of an interface defined for a distributed class.  
 
Serializable : Any Java class that you want to pass as an argument to an operation on a remote interface 
must realize the Serializable interface.  
 
 
 

Dynamic View: Set Up Remote Connection (details) 
  

 : Naming. Remote 
Skeleton

Remote Stub

The Remote Stub and Remote Skeleton replace the 
original class that was distributed.

DistributionClient : 
SampleDistributedClassClient

All calls to the distributed class are forwarded 
to the remote skeleton.

Lookup remote object by 
specifying it's URL.   This 
returns a reference to the 
remote object interface.1. lookup(String)

2. doSomething

2.1. doSomething

This diagram describes what happens “under the hood”, but in 
reality, you don’t really need to model the RemoteStub and 
RemoteSkeleton as these are autogenerated by tools from Sun.

  

  Copyright IBM Corp. 2004 Page 62 
 



Section 3: Payroll Architecture Handbook 

Dynamic View: Set Up Remote Connection  

Lookup remote object  by  
specifying it's URL.   This 
returns a reference to the 
remote object interface.

 : 
SampleDistributedClassClient

 : Naming.  : 
SampleDistributedClass

 : 
ISampleDist ributedClassInterface

1. lookup(String)

2. doSomething

2.1. doSomething

All calls  to the dist ributed class 
interface are forwarded to the actual 
dist ributed class

  
 

  Copyright IBM Corp. 2004 Page 63 
 



Section 3: Payroll Architecture Handbook 

Logical View 

Architectural Analysis 

Upper-Level Layers 
- Application layer  
- Business Services layer  

Upper-Level Layer Dependencies 
- The Application layer depends on the Business Services layer  

Architectural Design  

Incorporating ObjectStore 
For the Payroll System, a single root class has been chosen -- Employee. 
 
The selected container is the Map, where the unique key to access the Employees is EmployeeID. 
 
There is one DBManager class per ObjectStore database instance.  For the Payroll System, there is one ObjectStore 
database, the Payroll Database, that contains employee information, including timecard, purchase order, and 
paycheck information.  Thus, there is one PayrollDBManager that exists in the new OODBMS Support package.  
 
For the ObjectStore persistency mechanism, the DBManager class includes operations to access the OODBMS 
persistent entities in the database.  For the PayrollDBManager class, operations have been added to access 
Employee, Timecard, Purchase Order, and Paycheck information since that is required for the core system 
functionality. 
 
During Identify Design Mechanisms, the architect provides guidance to the designers and makes sure that the 
architecture has the necessary infrastructure to support the mechanism. Thus, the PayrollDBManager and the 
supporting architectural packages and relationships (OODBMS Support) have been defined in Identify Design 
Mechanisms.  However, the development of the interaction diagrams that describe these operations and where they 
fit into the existing use-case realizations has been deferred until detailed design (e.g., Use-Case and Subsystem 
Design). 
 
The following diagram demonstrates the operations that have been defined for the PayrollDBManager during 
Identify Design Mechanisms: 
 

  Copyright IBM Corp. 2004 Page 64 
 



Section 3: Payroll Architecture Handbook 

Architectural Layers and Their Dependencies: Main Diagram 
 

Application
<<layer>>

Business 
Services

<<layer>>

Base Reuse

global

Middleware
<<layer>>

  

Layer Descriptions 
 

Application Layer: The Application layer contains application-specific design elements. 
 
Business Services Layer: The Business Services layer contains business-specific elements that are used in 
several applications. 
 
Base Reuse : Basic reusable design elements. 
 
Middleware Layer: Provides utilities and platform-independent services. 
 

  Copyright IBM Corp. 2004 Page 65 
 



Section 3: Payroll Architecture Handbook 

Packages and Their Dependencies: Package Dependencies Diagram 
 
 

Employee  
Activities 

(from Application) 
Administration 

(from Application) Payroll
(from Application)

Payroll Artifacts
(from Business Services)

BankSystem
<<subsystem>>

(from Business Services)

External System 
Interfaces

(from Business Services)

PrintService 
<<subsystem>> 

(from Business Services) 

ProjectManagementData
b ase 

<<subsystem>> 

(from Business Services)

java.awt
(from Middleware)

com.odi
(from Middleware)

Base Reuse 
global 

java.lang
(from Middleware)

Security 
(from Business Services)

GUI Framework 
(from Security) 

Secure 
Interfaces

(from Security)

Security Manager 
<<subsystem>> 
(from Security) 

ObjectStore Support
(from Business Services) 

When the RDBMS 
mechanism is incorporated, 
the dependency to java.sql 
will be added 

java.rmi 
(from 
Middl )

When the OODBMS 
mechanism is incorporated, 
the dependency to 
ObjectStore Support will be 
added 

java.sql 
(from Middleware)

  
Package Descriptions 

 
Employee Activities : Contains the design elements that support the Employee's applications. 
 
Administration : Contains the design elements that support the Payroll Administrator's applications. 
 
Payroll : Contains the design elements that support the execution of the payroll processing. 
 

  Copyright IBM Corp. 2004 Page 66 
 



Section 3: Payroll Architecture Handbook 

Payroll Artifacts : Contains the core payroll abstractions. 
 
BankSystem Subsystem: Encapsulates communication with all external bank systems. 
 
External System Interfaces : Contains the interfaces that support access to external systems.  This is so 
that the external system interface classes can be version controlled independently from the subsystems that 
realize them. 
 
PrintService Subsystem: Provides utilities to produce hard-copy. 
 
ProjectManagementDatabase Subsystem: Encapsulates the interface to the legacy database containing 
information regarding projects and charge numbers. 
 
java.awt : The java.awt package contains the basic GUI design elements for java. 
 
com.odi : The com.odi package contains the design elements that  support the OODBMS persistency 
mechanism.  The name of the package in the model reflects the naming convention for 3rd party Java 
software. The convention is to use the reverse of the domain name, so if Rational had a Java package called 
"util" they’d call it "com.rational.util". This com.odi has nothing to do with Microsoft COM/DCOM; they 
are totally separate. There is nothing COM/DCOM related when using CORBA, RMI, or ObjectStore. 
 
Base Reuse : Basic reusable design elements. 
 
java.lang : The package contains some basic java design elements. 
 
Security : Contains design elements that implement the security mechanism. 
 
GUI Framework : This package comprises a whole framework for user interface management. 
 
It has a ViewHandler that manages the opening and closing of windows, plus window-to-window 
communication so that windows do not need to depend directly upon each other. 
 
This framework is security-aware, it has a login window that will create a server-resident user context 
object.  The ViewHandler class manages a handle to the user context object. 
 
The ViewHandler also starts up the controller classes for each use case manager. 
 
Secure Interfaces : Contains the interfaces that provide clients access to security services. 
 
Security Manager Subsystem: Provides the implementation for the core security services. 
 
ObjectStore Support : Contains the business-specific design elements that support the OODBMS 
persistency mechanism.  This includes the DBManager.  The DBManager class must contain operations for 
every OODBMS persistent class. 
 
java.rmi : The java.rmi package contains the classes that implement the RMI distribution mechanism. This 
package is commercially available with most standard JAVA IDEs. 
 
java.sql : The package that contains the design elements that support RDBMS persistency. 
 

  Copyright IBM Corp. 2004 Page 67 
 



Section 3: Payroll Architecture Handbook 

Process View 

Processes 
The processes for the Payroll System will be the following: 
 
One process per major interface or family of forms (e.g. EmployeeApplication): 
- EmployeeApplication: Controls the interface of the Employee application.  Controls the family of forms that the 

employee uses. 
There is one process per major interface because these are now seen as separate, mutually exclusive applications that 
will run concurrently with each other. 
 
One process per business service controller: 
- PayrollControllerProcess 
- TimecardControllerProcess 
There is one process per controller because these activities will need to run concurrently with each other. 
 
One process per external system: 
- ProjectManagementDBAccess 
- BankSystemAccess  
- PrinterAccess 
There is one process per external system.  These processes manage access to those systems.  Such access may be 
slow, so this allows other functionality to continue while the external system processes wait on the external system.  
These processes also synchronize access to the external systems from the other system processes.  
 
To further improve throughput and turnaround, a Bank Transaction thread was defined to allow multiple accesses to 
the Bank System to occur concurrently.  Each time a transaction needs to be sent to the Bank System, a different 
thread is used.  The Bank Transaction thread will run in the context of the Bank System Access process. 
 
In general, the above processes and threads were defined to support faster response times and take advantage of 
multiple processors.  

Design Element to Process Mapping 
- The classes associated with the individual user interfaces should be mapped to those processes. 
- The classes associated with the individual business services should be mapped to those processes. 
- The classes associated with access to the external systems should be mapped to those processes. 

Deployment View 

Nodes and Connections 
The nodes of the physical architecture for the Payroll System are the following: 
- Desktop PCs (processors) 
- Payroll Server (processor) 
- Bank System (processor) 
- Project Management Database (processor) 
- Printers (devices) 
 
- The Desktop PCs are connected to the Payroll Server via the Company LAN 
- The Printers are connected to the Payroll Server via the Company LAN 
- The Payroll Server is connected to the external Bank System via the Internet. 
- The Payroll Server is connected to the ProjectManagementDatabase via the Company LAN 

Process-to-Node Map 
The following processes run on the Desktop PCs: 
- EmployeeApplication 

  Copyright IBM Corp. 2004 Page 68 
 



Section 3: Payroll Architecture Handbook 

 
The following processes run on the Payroll Server: 
- PayrollControllerProcess 
- TimecardControllerProcess 
- ProjectManagementDBAccess 
- BankSystemAccess  
- PrinterAccess 

  Copyright IBM Corp. 2004 Page 69 
 



Section 3: Payroll Architecture Handbook 

 

  Copyright IBM Corp. 2004 Page 70 
 


	Introduction
	Definitions
	Course
	Course Offering
	Course Catalog
	Faculty
	Finance System
	Grade
	Professor
	Report Card
	Roster
	Student
	Schedule
	Transcript

	Objectives
	Scope
	References
	Functionality
	Usability
	Reliability
	Performance
	Supportability
	Security
	Design Constraints
	Course Registration System Use-Case Model Main Diagram
	Close Registration
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	No Professor for the Course Offering
	Billing System Unavailable


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Login
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	Invalid Name/Password


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Maintain Professor Information
	Brief Description
	Flow of Events
	Basic Flow
	Add a Professor
	Update a Professor
	Delete a Professor

	Alternative Flows
	Professor Not Found
	Delete Cancelled


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Maintain Student Information
	Brief Description
	Flow of Events
	Basic Flow
	Add a Student
	Update a Student
	Delete a Student

	Alternative Flows
	Student Not Found
	Delete Cancelled


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Register for Courses
	Brief Description
	Flow of Events
	Basic Flow
	Create a Schedule
	Update a Schedule
	Delete a Schedule
	Select Offerings
	Submit Schedule

	Alternative Flows
	Save a Schedule
	Unfulfilled Prerequisites, Course Full, or Schedule Conflicts
	No Schedule Found
	Course Catalog System Unavailable
	Course Registration Closed
	Delete Cancelled


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Select Courses to Teach
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	No Course Offerings Available
	Schedule Conflict
	Course Catalog System Unavailable
	Course Registration Closed


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Submit Grades
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	No Course Offerings Taught


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	View Report Card
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	No Grade Information Available


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Introduction
	Definitions
	Bank System
	Employee
	Payroll Administrator
	Project Management Database
	System Clock
	Pay Period
	Paycheck
	Payment Method
	Timecard
	Purchase Order
	Salaried Employee
	Commissioned Employee
	Hourly Employee

	Objectives
	Scope
	References
	Functionality
	Usability
	Reliability
	Performance
	Supportability
	Security
	Design Constraints
	Payroll System Use-Case Model Main Diagram
	Create Administrative Report
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	Requested Information Unavailable
	Invalid Format or Insufficient Information


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Create Employee Report
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	Requested Information Unavailable
	Invalid Format or Insufficient Information


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Login
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	Invalid Name/Password


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Maintain Employee Information
	Brief Description
	Flow of Events
	Basic Flow
	Add an Employee
	Update an Employee
	Delete an Employee

	Alternative Flows
	Employee Not Found
	Delete Cancelled


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Maintain Purchase Order
	Brief Description
	Flow of Events
	Basic Flow
	Create a Purchase Order
	Update a Purchase Order
	Delete a Purchase Order

	Alternative Flows
	Purchase Order Not Found
	Invalid Access to a Purchase Order
	Purchase Order is Closed
	Delete Cancelled


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Maintain Timecard
	Brief Description
	Flow of Events
	Basic Flow
	Submit Timecard

	Alternative Flows
	Invalid Number of Hours
	Timecard Already Submitted
	Project Management Database Not Available


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Run Payroll
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	Bank System Unavailable
	Deleted Employees


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Select Payment Method
	Brief Description
	Flow of Events
	Basic Flow
	Alternative Flows
	Employee Not Found


	Special Requirements
	Pre-Conditions
	Post-Conditions
	Extension Points

	Description
	Architectural Mechanisms
	Analysis Mechanisms
	Analysis-to-Design-to-Implementation Mechanisms Map
	Implementation Mechanisms
	Security
	Static View: Security
	Class Descriptions

	Dynamic View: Secure User Set-Up
	Dynamic View: Secure Data Access

	Persistency - RDBMS - JDBC
	Static View: Persistency JDBC
	Class Descriptions

	Dynamic View: JDBC RDBMS Read
	Dynamic View: JDBC RDBMS Update
	Dynamic View: JDBC RDBMS Create
	Dynamic View: JDBC RDBMS Delete
	Dynamic View: JDBC RDBMS Initialize

	Persistency - OODBMS - ObjectStore
	Static View: Persistency – ObjectStore OODBMS
	Class Descriptions

	Static View: Persistency - DBManager Detail
	Class Descriptions

	Dynamic View: ObjectStore – OODBMS Create
	Dynamic View: ObjectStore OODBMS Delete
	Dynamic View: ObjectStore OODBMS Read
	Dynamic View: ObjectStore OODBMS Update
	Dynamic View: ObjectStore OODBMS Initialize
	Dynamic View: ObjectStore OODBMS Shutdown

	Distribution - RMI
	Static View: Distribution - RMI
	Class Descriptions

	Dynamic View: Set Up Remote Connection (details)
	Dynamic View: Set Up Remote Connection



	Logical View
	Architectural Analysis
	Upper-Level Layers
	Upper-Level Layer Dependencies

	Architectural Design
	Incorporating ObjectStore
	Architectural Layers and Their Dependencies: Main Diagram
	
	Layer Descriptions


	Packages and Their Dependencies: Package Dependencies Diagram
	Package Descriptions



	Process View
	Processes
	Design Element to Process Mapping

	Deployment View
	Nodes and Connections
	Process-to-Node Map


