
SYSTEMS
ANALYSIS AND DESIGN

Nguyen Thanh Binh, Nguyen Quang Vu, Le Viet Truong, Nguyen Thi
Hanh, Vo Van Luong, Le Thi Bich Tra
Faculty of Computer Science
Vietnam - Korea University of Information and Communication Technology (VKU)



Case study



3

Case study

• Problem
• A very simple problem to show the use of UML in analysis and design
• It is taken from the “Applying UML and Patterns” book of Claig Larman

• A dice game
• The player rolls 10 times 2 dice. If the total of two dice is 7, he gains 10 points. At the end of the 

game, the score is saved to the scoreboard



4

Main Activities of Software Development
Analysis

Define the conceptual 
model

Design

Design the solution / 
software plan

Implementation

Code the system based on 
the design

Integration and Test

Prove that the system meets 
the requirements

Deployment

Installation and training

Maintenance

Post-install review
Support docs

Active support

Requirements 
Gathering

Define requirement 
specification



5

Case study

• Requirement analysis
• Use-case diagram

• Use-case: Play
• Description: The player rolls 2 dice 10 times. If each time the total is 7, he receives 10 points.

• Use-case: View High Score
• Description: They player consults the scores



6

Case study

• Requirement analysis
• Activity diagram

• Some activities are linked to the graphical user interface

View High Score Play

Roll dice

Turn < 10

[true ]

[view ] [play ] [exit ]

[false ]

Update High Score



7

Use-case

• Requirement analysis
• Activity diagram

• The relationship between the use-case diagram and activity diagram



8

Main Activities of Software Development
Analysis

Define the conceptual 
model

Design

Design the solution / 
software plan

Implementation

Code the system based on 
the design

Integration and Test

Prove that the system meets 
the requirements

Deployment

Installation and training

Maintenance

Post-install review
Support docs

Active support

Requirements 
Gathering

Define requirement 
specification



9

Case study

• Analysis
• Modelling the real world
• Independent of the implementation
• Modelling of the domain: conceptual class diagram
• Modelling of the dynamic behaviour of the system: collaboration diagram



10

Case study

• Modeling of conceptual class diagram



11

Case study

• A first collaboration diagram



12

Case study

• A first class diagram



13

Case study

• Collaboration diagram and class diagram



14

Case study

• Sequence diagram



15

Case study

• The creation of objects at the beginning of the game (DiceGame) for a player



16

Case study

• State diagram: modelling the states of the DiceGame



17

Case study

• Detection of inconsistency between the activity diagram and the state diagram



18

Case study

• Modification of the activity diagram as well as the envisaged graphical user interface



19

Case study

• The treatment of the scoreboard must be taken into account: the update and the creation

No treatment



20

Case study

• Sequence diagram: manage high score, create new player



21

Case study

• Sequence diagram: add high score to score board



22

Case study

• Class diagram



23

Main Activities of Software Development
Analysis

Define the conceptual 
model

Design

Design the solution / 
software plan

Implementation

Code the system based on 
the design

Integration and Test

Prove that the system meets 
the requirements

Deployment

Installation and training

Maintenance

Post-install review
Support docs

Active support

Requirements 
Gathering

Define requirement 
specification



24

Case study

• Design
• Take into account the implementation

• Manage the graphical user interface part
• Manage the persistence of scoreboard

• Define the logical architecture
• Define the physical architecture
• Introduce the technical class permitting to implement the architecture



25

Case study

• General architecture
• Classical three layer architecture

Presentation

Persistence

Business Logic



26

Case study

• A package diagram corresponds to the architecture

UI : presentation layer
Core : Business logic layer
DB : Persistence layer
Util : utility services/classes/functionalities



27

Case study

• Use design patterns to improve the classes of “Core” package

Class DiceGame has only one object
Class HighScore has only one object

Design pattern : Singleton



28

Case study

• Singleton design pattern

• Application to DiceGame and HighScore.

Singleton
static uniqueSingleton
other attributs …

static instance()
other operations …

return uniqueSingleton;



29

Case study

• Modified class diagram



30

Case study

• Observer design pattern

Subject
attach(o Observer)
dettach(o Observer)
notify()

for all o in observer
o.update()

ConcreteSubject
getState()
setState()
subjectState

Observer
update()

ConcreteObserver
update()
observerState

observer

observerState=
subject.getState()

return subjectState;

subject



31

Case study

• Application of Observer design pattern to improve the class diagram
• Decouple the graphical views and objects for the dice and players
• Application of Observer pattern

• Die and Player classes are ConcreteSubject class
• Introduce DieView et PlayerView as ConcreteObserver classes



32

Case study

• User view are instances of javax.swing.JPanel.java

+ play ()
+ Player ()
+ display ()

-name
-score : int = 0

Player

+ rolls ()
+ Die ()
+ display ()

-faceValue : int = 1
Die

+ notifyObserrvers ()
+ addObserver ()
+...()

-changed : bool = false
Observable

JPanel

+ update (o : Observable , arg : Object )()

«interface»
Observer

+ DieView (die : Die )()
+ update (o : Observable , arg : Object )()

DieView

+ PlayerView (player : Player )()
+ update (o : Observable , arg : Object )()

PlayerView



33

Case study

• Sequence diagram describes the interactions between Die object the its view



34

Case study

• The design of “UI” package



35

Case study

• The design of “Util” package



36

Case study

• The design of “DB” package
• How to ensure the independence between “Core” and “DB” package

• In order to be able to use several persistence types
• File (serialisation)
• Relation Database Management System (via JDBC)

• Use FactoryMethod design pattern

Product

Creator
factoryMethod()
anOperation()

ConcreteProduct CreateCreator
factoryMethod()

<<create>>

* 1

…
product = factoryMethod();
…

return new ConcreteProduct();



37

Case study

• The design of “DB” package
• Class diagram

+ HighScore ()
+ getInstance () : HighScore
+ add ()
+ load ()
+ save ()

-$ hs : HighScore = null

HighScore

+ HighScoreJDBC ()
+ load ()
+ save ()

HighScoreJDBC

+ HighScoreFile ()
+ load ()
+ save ()

HighScoreFile

+ makeKit ()

- : 

DBKit

+ makeKit ()

FileKit

+ makeKit ()

JDBCKit

<< create >>

Note : HighScore class is a Singleton



38

Case study

• The design of the “DB” package
• Sequence diagram



39

Case study

• Deployment diagram



40

Main Activities of Software Development
Analysis

Define the conceptual 
model

Design

Design the solution / 
software plan

Implementation

Code the system based on 
the design

Integration and Test

Prove that the system meets 
the requirements

Deployment

Installation and training

Maintenance

Post-install review
Support docs

Active support

Requirements 
Gathering

Define requirement 
specification



41

Case study

• Complete the interaction diagrams

• Generate the code



Conclusions



43

Conclusions

• Distinction between functional approach and object-oriented approach
• Master the basic object-oriented concepts

• UML: a modelling language
• Need a development process
• Different views
• Different models
• Use of the models in different development activities

• Master the main diagrams
• Use-case diagram
• Class diagram
• Interaction diagram



44

Conclusions

• The UML concepts can be extended
• The extensions

• Transformation of models to code
• Models independent of programming language

• The automatic code generation is only a supplement
• The models guide the coding process

• Master design principles
• GRAPS principles/patterns
• Some design patterns


