
SYSTEMS
ANALYSIS AND DESIGN

Nguyen Thanh Binh, Nguyen Quang Vu, Le Viet Truong, Nguyen Thi
Hanh, Vo Van Luong, Le Thi Bich Tra
Faculty of Computer Science
Vietnam - Korea University of Information and Communication Technology (VKU)



Introduction to object-oriented concepts
• Functional approach
• Object-oriented approach
• Object-oriented concepts

• Objects
• Classes
• Encapsulation
• Inheritance
• Polymorphism
• Abstraction



Functional/procedural approach
• Based on specified functions of the system

• A system consists of several functions

• Decomposition of functions into sub-functions
• A system consists of sub-systems
• A sub-system is divided into smaller subsystems

• Functions communicate using shared data or transfer of parameters

System

Function 1 Function 2

Function 1.1 Function 1.2 Function 2.1 Function 2.2



4

Functional approach

• Advantages
• Easy to apply
• Work well when data are simple
• Help to reduce complexity
• Obtain expected results

• Disadvantages
• Functions are separated from data
• Structure of the system is defined based on the functions, therefore a change of functions will 

cause difficulties in change of the structure
• The system is weakly open
• Difficult to re-use
• An significant maintenant cost



• The solution of a problem is organized around the concept of objects

• The object is an abstraction of data also containing functions

• A system consists of objects and relationships between them
• Objects communicated by exchanging messages to perform a task

• No global variables
• Encapsulation

• Inheritance

5

Object-oriented approaches

Object 2

Object 4

Object 1
Object 3

System



6

Object-oriented approaches

• Advantages
• Very close to the real world
• Easy to reuse
• Hide information (encapsulation)
• Lower development cost (inheritance)
• Suitable for complex systems

• Functional approach v.s. object-oriented approach
• Functional approach

• System = algorithms + data structures
• Object-oriented approaches

• System = Σ objects
• Object = algorithms + data structures



• Object is the concept describing an entity in the real world

• There are relationships between the objects

• Example
• The Student “Micheal” is an object
• The Student can’t be an object !

• Object = state + behaviour + identity
• State (data) describes the characteristics of an object at a given time, and is saved in the 

variables
• The behaviour is expressed by the functions of the object
• Each object has a unique identity

• Example

7

Objects

aRectangle
length = 2
width = 4
origin = aPoint

area()

aPoint
x = 0
y = 0
move()

state

behaviour

identity



8

Objects

• State = Set of attributes
• An attribute describes one property of the object
• At every moment, an attribute has a value in a specific set of attributes area
• Example

• The car has properties: color, length, width, weight, number of kilometres, …
• A Renault 207 weighs 1300 pounds, it is red, …

• Behaviour = Set of functions
• A function/method is the ability of the object to perform a task
• The behaviour depends on state

• Example: A car can start the engine then run, …



9

Objects

• Links
• Between objects, there may be links
• Example

• Communication between objects
• Send messages

• Message types
• constructor
• destructor
• getter
• setter
• others

Michael the university of Danangstudies at

Michael the university of Danang
registers()



10

Classes

• A class is an abstract description of a set of objects having
• similar properties
• common behaviour
• common relationship with other objects

• Class is an abstraction
• Abstraction: search for common aspects and omit the differences

• Reduce the complexity



11

Class

• Relationship
• There may be relationship between classes
• A relationship between classes is the set of links between their objects

• Class/Object
• An object is an instance of a class
• A value is an instance of an attribute
• A link between objects is an instance of the relationship between classes

Student University
Studies at



12

Classes

• Example: Class / Object

aRectangle
length = 2
width = 4
origin = point2
area()

point2
x = 0
y = 0
move()

Rectangle
length : float
width : float
origin: Point
area()

Point
x : float 
y : float
move()

point1
x = 5
y = 5
move()



13

Encapsulation

• Data + Processing of data = Object

• Attributes + Methods = Class

• The state of object is encapsulated by a set of attributes
• The behaviour is encapsulated by a set of methods

• Users of an object know the messages that the object can receive (public methods)
• The implementations of methods are hidden from external users

Class

attributes

methods



14

Encapsulation

• Advantages
• Hide the information
• Restrict access to the information from the exterior
• Avoid the global changes in the whole system: the internal implementation can be modified 

without affecting the external users
• Facilitate the modularity
• Easy to reuse
• Easy to maintain



15

Inheritance

• Inheritance allows the reuse of the state and the behaviour of a class by other classes

• A class is derived from one or more classes by sharing attributes and methods

• Subclass inherits attributes and methods of parent-class
• Generalisation / Specialisation

• Generalisation: common attributes of sub-classes are used to construct the parent-class
• Specialisation: sub-classes are constructed from the parent-class by adding other attributes 

that are unique to them

Parent-class

Sub-class

ge
ne

ra
lis

at
io

n

specialisation



16

Inheritance

• Single inheritance: a sub-class inherits from only one parent-class
• Multiple inheritance: a sub-class inherits from multiple parent-classes

• Example : a tree of inheritance

• What is the difficulty of multiple inheritance?

Polygon

Parallelogram Triangle

Rectangle Lozenge

Square

single inheritance

multiple inheritance



17

Inheritance

• Advantages
• Organisation of classes

• classes are organised hierarchically
• facilitation of the management of classes

• Construction of classes
• sub-classes are constructed from parent-classes

• Reduction of development cost by avoiding to re-write the code
• Allowing to apply easily the technique of polymorphism Polygon

Parallelogram Triangle

Rectangle Lozenge

Square

single inheritance

multiple inheritance



18

Polymorphism

• Polymorphism of methods
• Different methods are capable of answering to a request
• Methods having the same name are defined differently (different behaviours) in different 

classes
• Sub-classes inherit the specification of methods from parent-class and these methods can be 

re-defined appropriately
• Reducing the use of conditional statements (e.g., if-else, switch)

• Procedural approach versus Object-oriented approach Account
credit
debit

SavingAccount
Calculate costs
Calculate interests

CurrentAccount
Calculate costs
Calculate interests

main

execute the transaction

calculate costs
if current account

…
if saving account

…
else …

calculate interests
if current account

…
if saving account

…
else …



19

Polymorphism: dynamic linking

• The method to be executed by an object depends on the class of the object: dynamic linking

• The dynamic linking is necessary when
• A variable refers to an object whose class of membership is part of an inheritance tree
• Several methods exist for the same message (name) in the inheritance tree (polymorphism)

Account
calculateCosts()
calculateInterests()

SavingAccount
calculateCosts()
calculateInterests()

CurrentAccount
calculateCosts()
calculateInterests()

int calculateCost(Account accounts)
{

int s = 0;
for (int i = 0; i < accounts.length; i++)

s = s + accounts[i]->calculateCosts();
return s;

}

void main()
{

Account accounts = new Account[2];
accounts[0] = new CurrentAccount();
accounts[1] = new SavingAccount();
int s = calculateCost(accounts);
…

}



20

Abstraction: abstract class

• An abstract class
• indicates the common characteristics of the sub-classes
• can’t have instances/objects

• A concrete class
• contains a complete characterization of real-world objects
• is expected to have instances/objects

Polygon
area()
perimeter()

Parallelogram
area()
perimeter()

Triangle
area()
perimeter()

Figure
area()
perimeter()

Ellipse
area()
perimeter()

Circle
area()
perimeter()

Abstract class



21

Abstraction: abstract method

• A method should be defined at the highest possible abstraction level
• At this level, the method can be abstract (i.e., no implementation)
• In this case, the class is also abstract
• If a class has an abstract method, at least one of its subclasses must implement this method
• All the methods of a class at the bottom of the inheritance tree must be concrete

Polygon
area()
parimeter()

Parallelogram
area()
perimeter()

Triangle
area()
perimeter()

Figure
area()
perimeter()

Ellipse
area()
perimeter()

Circle
area()
perimeter()

Abstract Methods


