
SYSTEMS
ANALYSIS AND DESIGN

Nguyen Thanh Binh, Nguyen Quang Vu, Le Viet Truong, Nguyen Thi
Hanh, Vo Van Luong, Le Thi Bich Tra
Faculty of Computer Science
Vietnam - Korea University of Information and Communication Technology (VKU)



Architectural & Deployment modelling

• Package diagrams
• Component diagrams
• Deployment diagrams



3

Views

Static view
Class diagrams

Object diagrams

Deployment view
Deployment diagrams

Dynamic view
Interaction diagrams

State diagrams
Activity diagrams

Users view
Use-case diagrams

Architectural view
Package diagrams
Component diagrams



4

Package diagrams

• A package allows to group related elements
• Several related classes are grouped together into a package
• Several related packages are grouped into another package

• Notation

• Dependency
• A package may depend on another package

• For example, a package refers to an element of another package
• Notation

a package

a dependency



5

Package diagrams

• Example

package

Class

Dependency

Subsystem 1

Subsystem 2



6

Package diagram

• Why packages?
• Easy to manage, understand and manipulate
• Reduce complexity
• Iterative development: different developers, teams work simultaneously on different 

packages
• Example



7

Package diagrams

• Organizing principles of packages
• Functional cohesion

• Classes/interfaces that are grouped are strongly associated in terms of purpose, service, 
collaboration, function

• Example: all elements of the “payment” package are related to the payment of the 
products

Payments

CashPayment CreditPayment

DebitPayment

“Domain” package “Payments” package



8

Package diagrams

• Organizing principles of packages
• Functional cohesion

• The cohesion of a package is quantified by

• A small value of C can say that
• The package contains too many non-related items, is not well organised
• The package contains no-related items with the intent of the designer

▪ for example a “tools” packages
• The package contains a subset of highly cohesive elements, but the whole is not 

cohesive

C =
Number Of Internal Relationships

Number Of Elements



9

Package diagrams

• Organizing principles of packages (continued)
• Package of interface

• Related interfaces are placed in a package
• The implementation classes are separated

DAO

CashPayment CreditPayment

DebitPayment

SQLiteDAO

CashPaymentSQLiteImpl CreditPaymentSQLiteImpl

DebitPaymentSQLiteImpl

OracleDAO

CashPaymentOracleImpl CreditPaymentOracleImpl

DebitPaymentOracleImpl



10

Package diagrams

• Organizing principles of packages (continued)
• Package of unstable elements

• Stable elements are grouped in a package
• Unstable elements are grouped together in a package
• These are items that are often modified and redistributed
• To reduce the impact on the stable elements
• Example: a package includes twenty classes of which ten are often modified and 

redistributed. It is best to separate them into two packages: one includes ten stable 
classes, the other is unstable.



11

Package diagrams
• Organizing principles of packages (continued)

• The more dependent the more stable
• The more dependent a package has, the more stable it should be
• Since changes on these packages has big impact on other packages
• For example, a “tools” package needs to be stable.

• Some ways to improve the stability of a package
• It contains only interfaces or abstract classes
• It doesn’t depend on other packages, or depends only on very stable packages
• It contains stable code (well implemented)

Tools

UI

Business

DAO

use
use

use

use use



12

Package diagrams

• Organizing principles of packages (continued)
• Package of independent elements

• The elements that are used independently or in different contexts are separated into different packages
• Example: SQLLite & Oracle for development/testing & production environments respectively

DAO

CashPayment CreditPayment

DebitPayment

SQLiteDAO

CashPaymentSQLiteImpl CreditPaymentSQLiteImpl

DebitPaymentSQLiteImpl

OracleDAO

CashPaymentOracleImpl CreditPaymentOracleImpl

DebitPaymentOracleImpl



13

Component diagrams

• A component diagram models the architectural view of the system, the physical implementation of the 
system
• Classes describe the logical organization, while Components describe the physical implementations

• Component diagrams define physical software modules and their relationships to one another

• Components may represent anything from a single class to applications, subsystems, and systems
• Artifacts that implement components

• The artifacts may be any type of code that can reside in any type of memory-source code, binary files, 
scripts, executable files, databases, or applications

• Dependencies represent the types of relationships that exist between components on a Component 
diagram

• Notation



14

Component diagrams

• Modeling dependencies

• A component is an abstraction, a representation of a requirement for the physical software. 
• Realization refers to any implementation of a requirement.

• Component can contain the realizations (implementations)



15

Component diagrams

• A fundamental feature of components is the ability to define interfaces

• Interfaces come in two types: required and provided
• Provided interface: defines how another component must ask for access to a provided service
• Required interface: defines an interface exactly what it needs

• Example: Order component provides the services "add line items to the order", "cancel the order", and 
"pay for the order"; and requires discount (from other component)

• Connecting required and provided interfaces to form a partnership between components



16

Component diagrams

• UML 2.0 provides a way to represent all of the information defined so far for a component, including 
interfaces, realizations, and artifacts
• white box view



17

Components diagrams

• Ports map the interfaces of the component to the realizations that support them 

• A port appears as a small square in the edge of the component



18

Component diagrams

• A connector is a link that enables communication between two or more components
• Two types of connection: delegation connector & assembly connector

• A delegation connector maps a request from one port to either another port or to a realization that 
provides the implementation for the request

• An assembly connector is used to map a required interface to a provided interface



19

Component diagrams
• Example: Online shopping example with three related subsystems - Webstore, Warehouses and Accounting



20

Deployment diagrams

• Deployment diagram shows the architectural of a system as deployment (distribution) of software 
artifacts to deployment targets
• Artifacts represent concrete elements in physical world such as executable files, libraries, 

archives, database schemas, configuration files, …
• Deployment target is usually represented by a node which is either hardware device or software 

execution environment. Nodes could be connected

• Deployments diagrams could describe architecture at specification level (also call type level) or at 
instance level (similar to class diagrams and object diagrams).



21

Deployment diagrams

• Specification level (also call type level) deployment diagram shows some overview of deployment of 
artefacts to deployment targets, without referencing specific instances of artefacts or nodes.

Specification level deployment diagram -
web application deployed to Tomcat JSP server and database schemas - to database system



22

Deployment diagrams

• Instance level deployment diagram shows deployment of instances of artefacts to specific instances of 
deployment targets. It could be useful for example to show the differences in deployments to development, 
staging or production environments with the names/ids specific to deployment services or devices

Instance level deployment diagram - web application deployed to Tomcat JSP server and 
database shemas - to database system



Project

• Divide groups of 4-5 students
• Each group chooses a problem
• Building 

• Package diagrams
• Component diagrams
• Deployment diagrams


