
Design patterns

1

Nguyen Thanh Binh
Vietnam-Korea University of Information and Communication Technology,

The University of Danang

Introduction

´ In many fields, design of systems is based on pre-
built patterns

´ Examples
´ Electronic circuits are usually designed by

assembling other components (such as power
supplies, filters, buses, etc.)

´ Designing buildings can be assembled from
existing components…

2

Introduction

´ A software design pattern is an organization of
software components, specifically classes or
objects, that provides a common solution
(template) to a problem

´ Benefits of design patterns
´ The designer's experiences are reused

´ Code reuse, high maintainability

´ Common problems will be solved quickly thanks to
the available solutions
´ Reducing cost

3

Introduction

´ Design patterns are proposed by
´ Gamma, Helm, Johnson, and Vlissides
´ The book “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley
´ Published in 1994

´ 23 design patterns for object-oriented design
´ 23 design patterns proposed by 4 people, called

“Gang of Four” or GoF
´ “Description of communicating objects and

classes that are customized to solve a general
design problem in a particular context” -
Gamma, Helm, Johnson, and Vlissides

4

What is a design pattern?

´ A design pattern consists of
´ Pattern name
´ Intent

´ Objective
´ Problem

´ When to apply design pattern?
´ Problem, context, conditions for application

´ Solution
´ Not a specific solution but a template that can be

customized
´ Consequences

´ Describing the advantages and disadvantages of using
design patterns

5

Classification

´ Design patterns are divided into three categories
according to the purpose of use
´ Creational patterns deal with object creation

problems
´ Structural patterns relate to the organization of

classes/objects
´ Behavioral patterns describe interactions between

objects/classes
´ Design patterns are divided into two categories

according to the scope of application
´ Classes: describe the relationship between classes
´ Objects: describe interactions between objects

6

Classification

Purpose

Creational (5) Structural (7) Behavioral (11)

Scope Class
(4)

Factory Method Adapter (class) Interpreter
Template Method

Object
(19)

Abstract Factory
Builder
Prototype
Singleton

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

7

Creational patterns

´ 5 patterns
´ Factory Method
´ Abstract Factory

´ Builder

´ Prototype

´ Singleton

8

Factory Method

´ Motivation
´ We want to develop a set of office programs,

such as word processing (text), spreadsheets
(tables)... They share an interface. We have
defined:
´An abstract class Application implements the

common features of the interface
´An abstract class Document groups the properties

of documents that can be processed by
programs

´ Problem
´ Which class can create new objects of the
Document class in the code of the Application
class?

9

Factory Method

´ Solution
´ The subclasses of the Application class are

responsible for creating the Document objects

Document
open()
close()
save()

Application
createDocument()
newDocument()
openDocument()

TextDocument TableDocument ProcessingTable
createDocument()

ProcessingText
createDocument()

<<create>>

* 1
Document doc =

createDocument();
docs.add(doc);
doc.open();

docs

return new TextDocument();
return new TableDocument();

10

Factory Method
´ Structure

Product

Creator
factoryMethod()
anOperation()

ConcreteProduct CreateCreator
factoryMethod()

<<create>>

* 1

…
product = factoryMethod();
…

return new ConcreteProduct();

Defining the interface of the
objects that factoryMethod()
creates

Implementing interface
Product

Defining factoryMethod() that
returns an object of Product

Implementing factoryMethod() that
returns an object of
ConcreteProduct

11

Intent: Provides an interface for creating objects in a
superclass, but let subclasses decide which class to
instantiate/create

Builder

´ Motivation
´ We want to develop a text editor where

documents can be stored in various formats: HTML,
PostScript, PDF, ASCII…

´ Problem
´ How to organize the program so that a new format

can be added easily?

12

Builder

´ Solution 1 Exporter
export()

PSExporter
export()
getPSText()
…

PDFExporter
export()
getPDFText()
…

ASCIIExporter
export()
getASCIIText()
…

PSText PDFText ASCIIText

while(t=getNextToken()){
switch (t.type){

case CHAR:
ouputPSChar(t.chars);
break;

case PARA:
ouputPSPara();
break;

}
}

while(t=getNextToken()){
switch (t.type){

case CHAR:
ouputPDFChar(t.chars);
break;

case PARA:
ouputPDFPara();
break;

}
}

while(t=getNextToken()){
switch (t.type){

case CHAR:
ouputASCIIChar(t.chars);
break;

case PARA:
ouputASCIIPara();
break;

}
}

13

Limitations:
- Code redundancy
- When adding a new document format,
the entire program code that outputs the
document must be rewritten

Builder

´ Solution 2

Converter
convertChar()
beginPara()

PSConverter
convertChar()
beginPara()
…
getPSText()

PDFConverter
convertChar()
beginPara()
…
getPDFText()

ASCIIConverter
convertChar()
beginPara()
…
getASCIIText()

while(t=getNextToken()){
switch (t.type){

case CHAR:
builder.convertChar(t.chars);
break;

case PARA:
builder.beginPara();
break;

}
}

Exporter
export()

builder1 1

PSText PDFText ASCIIText

14

Benefits:
+ Saving code
+ Adding easily new format types

Builder
´ Structure

Builder
buildPart()

ConcreteBuilder
buildPart()
getResult()

Product

for (…)
builder.buildPart();

Director
construct()

builder1 1

Specifying an abstract interface
(Converter) for creating parts of a
Product object

Constructing an object using the
Builder interface

+ Constructing and assembling parts of the
product by implementing the Builder
interface
+ Providing an interface (getPSText,
getPDFText) for retrieving the product Representing the complex object

under construction

15

Intent: Separate the construction of a complex object
from its representation so that the same construction
process can create different representations

Singleton

´ Intent
´ Ensuring a class only has one object, and provide a

global point of access to it

´ Motivation
´ We want to develop an application and resource

management system on a computer. Some of the
objects on the system must be unique such as printer
queue, application manager, etc., and these objects
are used by a collection of applications.

´ Problem
´ How to organize program code so that an object is

unique?

16

Singleton
´ Bad solution

´ Using global variables to store objects
´ Limitation: different objects may be assigned to the

global variable

´ Good solution
´ There is only one class that can create an object

and access that unique object (singleton)

Singleton
static uniqueSingleton
other attributs …
static instance()
other operations …

return uniqueSingleton;

17

Singleton
´ Example with code

18

SingleObject

- instance: SingleObject

- SingleObject()
+getInstance() : SingleObject
+showMessage()

SingletonPatternDemo

+main()

uses

instance

Singleton
´ Create a Singleton Class

19

Singleton
´ Get the only object from the singleton class

20

Structural Patterns

´ 7 patterns
´ Adapter
´ Bridge

´ Composite

´ Decorator
´ Facade

´ Flyweight

´ Proxy

21

Adapter

´ Motivation
´ We want to develop a graphic editing tool (draw

lines, polygons, text strings, ...). Interfaces for
graphic objects are defined by the abstract class
Shape. Each specific type of graphic object is
defined as a subclass of Shape, such as
LineShape, PolygonShape, TextShape, etc.

´ Problem
´ For the TextShape class, we want to use operations

on text that are already implemented for the Text
class in another application.

22

Adapter

´ Solutions
´ Defining the TextShape class so that it adapts the

interfaces of the Text class to the Shape class. This
can be done in two ways:
´ Solution 1: TextShape contains an object of Text and

inherits Shape – Adapter (object)

´ Solution 2: TextShape inherits Shape and the Text –
Adapter (class)

23

Adapter

´ Adapter (object)

DrawingEditor Shape
draw()
dimension()

LineShape
draw()
dimension()

TextShape
draw()
dimension()

Text
content()
length()
width()

text

drawString(text.content())
l = text.length();
w = text.width();

24

Adapter

´ Adapter (object)
´ contains an object and inherits a class

Client Target
request()

Adapter
request()

Adaptee
specificResquest()

adaptee.specificResquest()

adaptee

25 Intent: Converting the interface of a class into
another expected interface

Adapter

´ Adapter (class)
´ Multiple inheritance

Client Target
request()

Adapter
request()

Adaptee
specificResquest()

super.specificResquest()

26

Question: How to apply Adapter (class) to the problem?

Intent: Converting the interface of a class into
another expected interface

Composite

´ Motivation
´ We want to develop a graphical editor that allows

complex pictures to be built from simple components:
simple components are grouped to build larger
components, and these components are further
grouped to create even larger components…

´ Problem
´ In the application, there are two types of objects: the

primitive graphic objects (lines, texts, rectangles...)
and the container objects that contain them. How to
handle these two types of objects in the same way,
that is, without having to distinguish them?

27

Composite
´ Solution

´ Defining classes for the primitive objects (Line, Text,
Rectangle) and the container object so that they
implement the same interface (Graphic)

Graphic
draw()
add(Graphic)
remove(Graphic)

Line
draw()

Text
draw()

forall g in graphics
g.draw()

Rectangle
draw()

Picture
draw()
add(Graphic g)
remove(Graphic)

graphics

add g to list of
graphics

Primitive objects can
only draw

Container object can draw
and also manipulate (add,
remove) its child objects

Defining common
operations for both
primitive objects
(Line, Text, ...) and
container objects
(Picture).

28

Composite
´ Example: a typical composite object structure of

recursively composed Graphic objects

aPicture

aPicture aLine aTextaRectangle

aLine aTextaRectangle

29

Composite

´ Structure

Component
operation()
add(Component)
remove(Component)

Leaf
operation()

forall c in children
c.operation()

Composite
operation()
add(Component)
remove(Component)

children
Client

30

Intent: Composing objects into tree structures
to represent part-whole hierarchies

Decorator

´ Motivation
´ We want to build a graphical user interface tool

that allows the design of window graphical
interface elements. Each of these interface
elements can have common properties such as
scroll bar, border, etc.

´ Problem
´ How to effectively implement these common

properties?

31

Decorator

´ Solution 1

InterfaceComponent
draw()

GraphicalZone
draw()

Border
drawBorder()

TextZone
draw()

Scroll
scrollTo()

BordScrollGraphicalZone
draw()

BordTextZone
draw()

scrollOption

bordOption

bordOption

Limitation: Combining a large number of
properties complicates the class hierarchy

32

Decorator

´ Solution 2
InterfaceComponent
draw()

GraphicalZone
draw()

TextZone
draw()

ScrollDecorator
draw()
scrollTo()
scrollPostion

BordDecorator
draw()
drawBord()
bordWidth

Decorator
draw()

component

component.draw();

super.draw();
drawBord();

Advantages:
+ Common properties can be added more easily
+ The class hierarchy is always simple

33

Decorator
´ Structure

Component
operation()

ConcreteComponent
operation()

ConcreteDecorator
operation()
addedBehavior()
addedState

Decorator
operation()

component

component.operation();

super.opertaion();
addedBehavior();

34

Intent: Attaching additional responsibilities to
an object dynamically

Decorator
´ Example with code

35

ShapeDecorator
#decoratedShape: Shape
+ShapeDecorator()
+draw()

Shape
+draw()

Circle
+draw()

Rectangle
+draw()

RedShapeDecorator
+RedShapeDecorator()
+draw()
- setRedBorder()

Decorator
´ Create a Shape interface

´ Create classes implementing the Shape interface

36

Decorator
´ Create abstract decorator class implementing

the Shape interface

37

Decorator
´ Create concrete decorator class extending

the ShapeDecorator class

38

Decorator
´ Use the RedShapeDecorator to decorate Shape objects

39

Behavioral Patterns

´ 11 patterns
´ Chain of Responsibility
´ Command
´ Interpreter
´ Iterator
´ Mediator
´ Memento
´ Observer
´ State
´ Strategy
´ Template Method
´ Visitor

40

Observer

´ Motivation
´ We want to develop a tool to visually represent

data using different types of graphs. The same
data can be represented by different types of
graphs in different windows.

´ Problem
´ When there is a data change in each window, the

remaining windows must be changed accordingly

41

Observer

´ The tool will be developed

42

Observer
´ Solution

Subject
attach(o Observer)
dettach(o Observer)
notify()

for all o in observer
o.update()

ConcreteSubject
getState()
setState()
subjectState

Observer
update()

Table
update()
observerState

Histogram
update()
observerState

Circle
update()
observerState

observer

return subjectState;

observerState=
subject.getState()

subject

43

notify();

Observer
´ Structure

Subject
attach(o Observer)
dettach(o Observer)
notify() for all o in observer

o.update()

ConcreteSubject
getState()
setState()
subjectState

Observer
update()

ConcreteObserver
update()
observerState

observer

observerState=
subject.getState()

return subjectState;

subject

Providing an interface for
attaching and detaching
Observer objects

Defining an updating interface for
objects that should be notified of
changes in a subject

+ Storing state of interest to ConcreteObserver
objects
+ Sending a notification to its observers when its
state changes

+ Maintaining a reference to a ConcreteSubject
object
+ Implementing the Observer updating interface
to keep its state consistent with the subject's

44
Intent: Defining a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically

Observer

´ Typical interactions in Observer

aConcreteSubject aConcreteObserver anotherConcreteObserver
setState()

notify()

update()

getState()

update()

getState()

45

Template Method

´ Motivation
´ We want to develop software, including the

Application and Document classes, Application is
responsible for opening an existing document from
file. Document represents the information of a
document. Specific applications, such as
DrawApplication and TextApplication, inherit from
Application to meet some specific needs.

´ Problem
´ How to organize the program code of some

operations, such as opening documents
(openDocument) can be shared uniformly for
different specific applications?

46

Template Method
´ Solution

Document
open()
close()
save()
doRead()

Application
addDocument()
openDocument()
doCreateDoc()
canOpenDoc()
aboutToOpenDoc()

docs

DrawApplication
doCreateDoc()
canOpenDoc()
aboutToOpenDoc()

TextApplication
doCreateDoc()
canOpenDoc()
aboutToOpenDoc()

DrawDocument
doRead()

TextDocument
doRead()

return new TextDocument()

47
Template Method
openDocument() uses
doCreateDoc(), canOpenDoc(),
aboutToOpenDoc()

Template Method
´ Method openDocument is called Template

Method

abstract class Application{
abstract public Document doCreateDoc();
abstract public Boolean canOpenDoc();
…
public void openDocument (String name) {

if (!canOpenDoc(name))
{ // cannot handle this document

return;
}
Document doc = doCreateDoc();
if (doc) {
docs.addDocument(doc);
aboutToOpenDoc(doc);
doc.open();
doc.doRead();

}
}
…

}

ü openDocument defines the
steps to open a document:
checking document,
creating document objects,
adding documents to a set
of documents, and reading
documents from files.

ü These steps will be
implemented in subclasses
(TextApplication and
DrawApplication).

48

Template Method

´ Structure

AbstractClass
templateMethod()
primitiveOperation1()
primitiveOperation2()

ConcreteClass
primitiveOperation1()
primitiveOperation2()

…
primitiveOperation1();
…
primitiveOperation2();
…

49

Intent: Defining the skeleton of an algorithm in the
superclass but letting subclasses override specific
steps of the algorithm without changing its structure

Template Method
´ Example with code

50

Football
+initialize()
+beginPlay()
+endPlay()
+play()

Cricket
+initialize()
+beginPlay()
+endPlay()
+play()

Game
+initialize()
+beginPlay()
+endPlay()
+play()

Template Method
´ Create an abstract class with a template

method being final

51

Template Method
´ Create Cricket extending Game

52

Template Method
´ Create Football extending Game

53

Template Method
´ Use the Game's template method play() to

demonstrate a defined way of playing game

54

More on design patterns

´ References
´ Design Patterns: Elements of Reusable Object-

Oriented Software, Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, Addison-Wesley,
1994

´ https://www.tutorialspoint.com/design_pattern/ind
ex.htm

´ https://refactoring.guru/design-patterns

55

